25,803 research outputs found

    A schema-based P2P network to enable publish-subscribe for multimedia content in open hypermedia systems

    No full text
    Open Hypermedia Systems (OHS) aim to provide efficient dissemination, adaptation and integration of hyperlinked multimedia resources. Content available in Peer-to-Peer (P2P) networks could add significant value to OHS provided that challenges for efficient discovery and prompt delivery of rich and up-to-date content are successfully addressed. This paper proposes an architecture that enables the operation of OHS over a P2P overlay network of OHS servers based on semantic annotation of (a) peer OHS servers and of (b) multimedia resources that can be obtained through the link services of the OHS. The architecture provides efficient resource discovery. Semantic query-based subscriptions over this P2P network can enable access to up-to-date content, while caching at certain peers enables prompt delivery of multimedia content. Advanced query resolution techniques are employed to match different parts of subscription queries (subqueries). These subscriptions can be shared among different interested peers, thus increasing the efficiency of multimedia content dissemination

    Data mining and fusion

    No full text

    Alpha Multipliers Breadth-First Search Technique for Resource Discovery in Unstructured Peer-to-Peer Networks

    Get PDF
    Resource discovery in unstructured peer-to-peer (P2P) networks is important in the field of grid computing. Breadth-first search (BFS) is widely used for resource discovery in unstructured P2P networks. The technique is proven to return as many search results as possible. However, the network cost of the technique is high due to the flooding of query messages that can degenerate the performance of the whole network. The objective of this study is to optimise the BFS technique, so that it will produce good search results without flooding the network with unnecessary walkers. Several resource discovery techniques used in unstructured P2P networks are discussed and categorised. P2P simulators that are used for P2P network experiments were studied in accordance to their characteristics such as, scalability, extensibility and support status. Several network topology generators were also scrutinised and selected in order to find out the most real-life like network generation model for unstructured P2P experiments. Multiple combinations of five-tuple alpha multipliers have been experimented to find out the best set to make -BFS. In our test, the -BFS increases the query efficiency of the conventional BFS from 55.67% to 63.15%

    Peer-to-Peer Networks and Computation: Current Trends and Future Perspectives

    Get PDF
    This research papers examines the state-of-the-art in the area of P2P networks/computation. It attempts to identify the challenges that confront the community of P2P researchers and developers, which need to be addressed before the potential of P2P-based systems, can be effectively realized beyond content distribution and file-sharing applications to build real-world, intelligent and commercial software systems. Future perspectives and some thoughts on the evolution of P2P-based systems are also provided

    Information Spreading in Stationary Markovian Evolving Graphs

    Full text link
    Markovian evolving graphs are dynamic-graph models where the links among a fixed set of nodes change during time according to an arbitrary Markovian rule. They are extremely general and they can well describe important dynamic-network scenarios. We study the speed of information spreading in the "stationary phase" by analyzing the completion time of the "flooding mechanism". We prove a general theorem that establishes an upper bound on flooding time in any stationary Markovian evolving graph in terms of its node-expansion properties. We apply our theorem in two natural and relevant cases of such dynamic graphs. "Geometric Markovian evolving graphs" where the Markovian behaviour is yielded by "n" mobile radio stations, with fixed transmission radius, that perform independent random walks over a square region of the plane. "Edge-Markovian evolving graphs" where the probability of existence of any edge at time "t" depends on the existence (or not) of the same edge at time "t-1". In both cases, the obtained upper bounds hold "with high probability" and they are nearly tight. In fact, they turn out to be tight for a large range of the values of the input parameters. As for geometric Markovian evolving graphs, our result represents the first analytical upper bound for flooding time on a class of concrete mobile networks.Comment: 16 page

    Overlay networks for smart grids

    Get PDF
    • …
    corecore