37 research outputs found

    A progression ring for interfaces of instruction sequences, threads, and services

    Get PDF
    We define focus-method interfaces and some connections between such interfaces and instruction sequences, giving rise to instruction sequence components. We provide a flexible and practical notation for interfaces using an abstract datatype specification comparable to that of basic process algebra with deadlock. The structures thus defined are called progression rings. We also define thread and service components. Two types of composition of instruction sequences or threads and services (called `use' and `apply') are lifted to the level of components.Comment: 12 page

    Functional units for natural numbers

    Get PDF
    Interaction with services provided by an execution environment forms part of the behaviours exhibited by instruction sequences under execution. Mechanisms related to the kind of interaction in question have been proposed in the setting of thread algebra. Like thread, service is an abstract behavioural concept. The concept of a functional unit is similar to the concept of a service, but more concrete. A state space is inherent in the concept of a functional unit, whereas it is not inherent in the concept of a service. In this paper, we establish the existence of a universal computable functional unit for natural numbers and related results.Comment: 17 pages; notational mistakes in tables 5 and 6 corrected; erroneous definition at bottom of page 9 correcte

    Straight-line instruction sequence completeness for total calculation on cancellation meadows

    Get PDF
    A combination of program algebra with the theory of meadows is designed leading to a theory of computation in algebraic structures which use in addition to a zero test and copying instructions the instruction set {x⇐0,x⇐1,xβ‡βˆ’x,x⇐xβˆ’1,x⇐x+y,x⇐xβ‹…y}\{x \Leftarrow 0, x \Leftarrow 1, x\Leftarrow -x, x\Leftarrow x^{-1}, x\Leftarrow x+y, x\Leftarrow x\cdot y\}. It is proven that total functions on cancellation meadows can be computed by straight-line programs using at most 5 auxiliary variables. A similar result is obtained for signed meadows.Comment: 24 page

    Instruction sequences with indirect jumps

    Get PDF
    We study sequential programs that are instruction sequences with direct and indirect jump instructions. The intuition is that indirect jump instructions are jump instructions where the position of the instruction to jump to is the content of some memory cell. We consider several kinds of indirect jump instructions. For each kind, we define the meaning of programs with indirect jump instructions of that kind by means of a translation into programs without indirect jump instructions. For each kind, the intended behaviour of a program with indirect jump instructions of that kind under execution is the behaviour of the translated program under execution on interaction with some memory device.Comment: 23 pages; typos corrected, phrasing improved, reference replace

    Thread extraction for polyadic instruction sequences

    Get PDF
    In this paper, we study the phenomenon that instruction sequences are split into fragments which somehow produce a joint behaviour. In order to bring this phenomenon better into the picture, we formalize a simple mechanism by which several instruction sequence fragments can produce a joint behaviour. We also show that, even in the case of this simple mechanism, it is a non-trivial matter to explain by means of a translation into a single instruction sequence what takes place on execution of a collection of instruction sequence fragments.Comment: 21 pages; error corrected; presentation improve

    Instruction sequences with dynamically instantiated instructions

    Get PDF
    We study sequential programs that are instruction sequences with dynamically instantiated instructions. We define the meaning of such programs in two different ways. In either case, we give a translation by which each program with dynamically instantiated instructions is turned into a program without them that exhibits on execution the same behaviour by interaction with some service. The complexity of the translations differ considerably, whereas the services concerned are equally simple. However, the service concerned in the case of the simpler translation is far more powerful than the service concerned in the other case.Comment: 25 pages; phrasing improve

    Programming an interpreter using molecular dynamics

    Get PDF
    PGA (ProGram Algebra) is an algebra of programs which concerns programs in their simplest form: sequences of instructions. Molecular dynamics is a simple model of computation developed in the setting of PGA, which bears on the use of dynamic data structures in programming. We consider the programming of an interpreter for a program notation that is close to existing assembly languages using PGA with the primitives of molecular dynamics as basic instructions. It happens that, although primarily meant for explaining programming language features relating to the use of dynamic data structures, the collection of primitives of molecular dynamics in itself is suited to our programming wants.Comment: 27 page

    Probabilistic thread algebra

    Get PDF
    We add probabilistic features to basic thread algebra and its extensions with thread-service interaction and strategic interleaving. Here, threads represent the behaviours produced by instruction sequences under execution and services represent the behaviours exhibited by the components of execution environments of instruction sequences. In a paper concerned with probabilistic instruction sequences, we proposed several kinds of probabilistic instructions and gave an informal explanation for each of them. The probabilistic features added to the extension of basic thread algebra with thread-service interaction make it possible to give a formal explanation in terms of non-probabilistic instructions and probabilistic services. The probabilistic features added to the extensions of basic thread algebra with strategic interleaving make it possible to cover strategies corresponding to probabilistic scheduling algorithms.Comment: 25 pages (arXiv admin note: text overlap with arXiv:1408.2955, arXiv:1402.4950); some simplifications made; substantially revise

    Instruction sequence processing operators

    Get PDF
    Instruction sequence is a key concept in practice, but it has as yet not come prominently into the picture in theoretical circles. This paper concerns instruction sequences, the behaviours produced by them under execution, the interaction between these behaviours and components of the execution environment, and two issues relating to computability theory. Positioning Turing's result regarding the undecidability of the halting problem as a result about programs rather than machines, and taking instruction sequences as programs, we analyse the autosolvability requirement that a program of a certain kind must solve the halting problem for all programs of that kind. We present novel results concerning this autosolvability requirement. The analysis is streamlined by using the notion of a functional unit, which is an abstract state-based model of a machine. In the case where the behaviours exhibited by a component of an execution environment can be viewed as the behaviours of a machine in its different states, the behaviours concerned are completely determined by a functional unit. The above-mentioned analysis involves functional units whose possible states represent the possible contents of the tapes of Turing machines with a particular tape alphabet. We also investigate functional units whose possible states are the natural numbers. This investigation yields a novel computability result, viz. the existence of a universal computable functional unit for natural numbers.Comment: 37 pages; missing equations in table 3 added; combined with arXiv:0911.1851 [cs.PL] and arXiv:0911.5018 [cs.LO]; introduction and concluding remarks rewritten; remarks and examples added; minor error in proof of theorem 4 correcte
    corecore