6 research outputs found

    A Machine Learning System for Automatic Detection of Preterm Activity Using Artificial Neural Networks and Uterine Electromyography Data

    Get PDF
    Preterm births are babies born before 37 weeks of gestation. The premature delivery of babies is a major global health issue with those affected at greater risk of developing short and long-term complications. Therefore, a better understanding of why preterm births occur is needed. Electromyography is used to capture electrical activity in the uterus to help treat and understand the condition, which is time consuming and expensive. This has led to a recent interest in automated detection of the electromyography correlates of preterm activity. This paper explores this idea further using artificial neural networks to classify term and preterm records, using an open dataset containing 300 records of uterine electromyography signals. Our approach shows an improvement on existing studies with 94.56% for sensitivity, 87.83% for specificity, and 94% for the area under the curve with 9% global error when using the multilayer perceptron neural network trained using the Levenberg-Marquardt algorithm

    Dynamic neural network architecture inspired by the immune algorithm to predict preterm deliveries in pregnant women

    Get PDF
    There has been some improvement in the treatment of preterm infants, which has helped to increase their chance of survival. However, the rate of premature births is still globally increasing. As a result, this group of infants is most at risk of developing severe medical conditions that can affect the respiratory, gastrointestinal, immune, central nervous, auditory and visual systems. There is a strong body of evidence emerging that suggests the analysis of uterine electrical signals, from the abdominal surface (Electrohysterography – EHG), could provide a viable way of diagnosing true labour and even predict preterm deliveries. This paper explores this idea further and presents a new dynamic self-organized network immune algorithm that classifies term and preterm records, using an open dataset containing 300 records (38 preterm and 262 term). Using the dataset, oversampling and cross validation techniques are evaluated against other similar studies. The proposed approach shows an improvement on existing studies with 89% sensitivity, 91% specificity, 90% positive predicted value, 90% negative predicted value, and an overall accuracy of 90%

    Machine learning Ensemble Modelling to classify caesarean section and vaginal delivery types using cardiotocography traces

    Get PDF
    Human visual inspection of Cardiotocography traces is used to monitor the foetus during labour and avoid neonatal mortality and morbidity. The problem, however, is that visual interpretation of Cardiotocography traces is subject to high inter and intra observer variability. Incorrect decisions, caused by miss-interpretation, can lead to adverse perinatal outcomes and in severe cases death. This study presents a review of human Cardiotocography trace interpretation and argues that machine learning, used as a decision support system by obstetricians and midwives, may provide an objective measure alongside normal practices. This will help to increase predictive capacity and reduce negative outcomes. A robust methodology is presented for feature set engineering using an open database comprising 552 intrapartum recordings. State-of-the-art in signal processing techniques is applied to raw Cardiotocography foetal heart rate traces to extract 13 features. Those with low discriminative capacity are removed using Recursive Feature Elimination. The dataset is imbalanced with significant differences between the prior probabilities of both normal deliveries and those delivered by caesarean section. This issue is addressed by oversampling the training instances using a synthetic minority oversampling technique to provide a balanced class distribution. Several simple, yet powerful, machine-learning algorithms are trained, using the feature set, and their performance is evaluated with real test data. The results are encouraging using an ensemble classifier comprising Fishers Linear Discriminant Analysis, Random Forest and Support Vector Machine classifiers, with 87% (95% Confidence Interval: 86%, 88%) for Sensitivity, 90% (95% CI: 89%, 91%) for Specificity, and 96% (95% CI: 96%, 97%) for the Area Under the Curve, with a 9% (95% CI: 9%, 10%) Mean Square Error

    A Strategy for Classification of “Vaginal vs. Cesarean Section” Delivery: Bivariate Empirical Mode Decomposition of Cardiotocographic Recordings

    Get PDF
    We propose objective and robust measures for the purpose of classification of “vaginal vs. cesarean section” delivery by investigating temporal dynamics and complex interactions between fetal heart rate (FHR) and maternal uterine contraction (UC) recordings from cardiotocographic (CTG) traces. Multivariate extension of empirical mode decomposition (EMD) yields intrinsic scales embedded in UC-FHR recordings while also retaining inter-channel (UC-FHR) coupling at multiple scales. The mode alignment property of EMD results in the matched signal decomposition, in terms of frequency content, which paves the way for the selection of robust and objective time-frequency features for the problem at hand. Specifically, instantaneous amplitude and instantaneous frequency of multivariate intrinsic mode functions are utilized to construct a class of features which capture nonlinear and nonstationary interactions from UC-FHR recordings. The proposed features are fed to a variety of modern machine learning classifiers (decision tree, support vector machine, AdaBoost) to delineate vaginal and cesarean dynamics. We evaluate the performance of different classifiers on a real world dataset by investigating the following classifying measures: sensitivity, specificity, area under the ROC curve (AUC) and mean squared error (MSE). It is observed that under the application of all proposed 40 features AdaBoost classifier provides the best accuracy of 91.8% sensitivity, 95.5% specificity, 98% AUC, and 5% MSE. To conclude, the utilization of all proposed time-frequency features as input to machine learning classifiers can benefit clinical obstetric practitioners through a robust and automatic approach for the classification of fetus dynamics

    Classification Techniques Using EHG Signals for Detecting Preterm Births

    Get PDF
    Premature birth is defined as an infant born before 37 weeks of gestation and can be sub-categorized into three phrases; late preterm delivery between 34 and 36 weeks of gestation; moderately preterm between 32 and 34 weeks, and extreme preterm less than 28 weeks of gestation. Globally, the rate of preterm births is increasing, thus resulting in significant health, development and economic problems. The current methods for the detection of preterm birth are inadequate due to the fact that the exact cause of premature uterine contractions leading to delivery is mostly unknown. Another problem is the interpretation of temporal and spectral characteristics of Electromyography (EMG), which is an electrodiagnostic medicine technique for recording and evaluating the electrical activity produced by uterine muscles during pregnancy and parturition – significant variability exists among obstetric care practitioners. Apart from a small number of potential causes for preterm birth, such as medication, uterine over-distension, preterm premature rupture of membranes (PPROM), intrauterine inflammation, precocious foetal endocrine activation, surgery, ethnicity and lifestyle, there is still a large amount of uncertainty about their specific risks. Hence, it is currently very difficult to make reliable predictions about preterm delivery risk. There has also been some evidence that the analysis of uterine electrical signals, collected from the abdominal surface, could provide an independent and easier way to diagnose true labour and detect the onset of preterm delivery. Early detection opens up new avenues for the development of an automated ambulatory system, based on uterine EMG, for patient monitoring during pregnancy. This can be made possible through the use of machine learning. The essence of machine learning is the utilisation of previously recorded data outcomes to train algorithms to ii stimulate software learning elements. Such learned models can, as a result, be used to detect and predict the early signs associated with the onset of preterm birth. Therefore in this thesis, Electrohysterography signals are used to classify uterine activity associated with preterm birth. This is achieved using an open dataset, which contains 262 records for women who delivered at term and 38 who delivered prematurely. Several new features from Electromyography studies are utilized, as well as feature-ranking techniques to determine their discriminative capabilities in detecting term and preterm records. The results illustrate that the combination of the Levenberg-Marquardt trained Feed-Forward Neural Network, Radial Basis Function Neural Network and the Random Neural Network classifiers performed the best, with 91% for sensitivity, 84% for specificity, 94% for the area under the curve and 12% for the mean error rate. Applying advanced machine learning algorithms, in conjunction with innovative signal processing techniques and the analysis of Electrohysterography signals shows significant benefits for use in clinical interventions for preterm birth assessments

    DYNAMIC SELF-ORGANISED NEURAL NETWORK INSPIRED BY THE IMMUNE ALGORITHM FOR FINANCIAL TIME SERIES PREDICTION AND MEDICAL DATA CLASSIFICATION

    Get PDF
    Artificial neural networks have been proposed as useful tools in time series analysis in a variety of applications. They are capable of providing good solutions for a variety of problems, including classification and prediction. However, for time series analysis, it must be taken into account that the variables of data are related to the time dimension and are highly correlated. The main aim of this research work is to investigate and develop efficient dynamic neural networks in order to deal with data analysis issues. This research work proposes a novel dynamic self-organised multilayer neural network based on the immune algorithm for financial time series prediction and biomedical signal classification, combining the properties of both recurrent and self-organised neural networks. The first case study that has been addressed in this thesis is prediction of financial time series. The financial time series signal is in the form of historical prices of different companies. The future prediction of price in financial time series enables businesses to make profits by predicting or simply guessing these prices based on some historical data. However, the financial time series signal exhibits a highly random behaviour, which is non-stationary and nonlinear in nature. Therefore, the prediction of this type of time series is very challenging. In this thesis, a number of experiments have been simulated to evaluate the ability of the designed recurrent neural network to forecast the future value of financial time series. The resulting forecast made by the proposed network shows substantial profits on financial historical signals when compared to the self-organised hidden layer inspired by immune algorithm and multilayer perceptron neural networks. These results suggest that the proposed dynamic neural networks has a better ability to capture the chaotic movement in financial signals. The second case that has been addressed in this thesis is for predicting preterm birth and diagnosing preterm labour. One of the most challenging tasks currently facing the healthcare community is the identification of preterm labour, which has important significances for both healthcare and the economy. Premature birth occurs when the baby is born before completion of the 37-week gestation period. Incomplete understanding of the physiology of the uterus and parturition means that premature labour prediction is a difficult task. The early prediction of preterm births could help to improve prevention, through appropriate medical and lifestyle interventions. One promising method is the use of Electrohysterography. This method records the uterine electrical activity during pregnancy. In this thesis, the proposed dynamic neural network has been used for classifying between term and preterm labour using uterine signals. The results indicated that the proposed network generated improved classification accuracy in comparison to the benchmarked neural network architectures
    corecore