9 research outputs found

    Generic knowledge-based analysis of social media for recommendations

    Get PDF
    Recommender systems have been around for decades to help people find the best matching item in a pre-defined item set. Knowledge-based recommender systems are used to match users based on information that links the two, but they often focus on a single, specific application, such as movies to watch or music to listen to. In this presentation, we present our Interest-Based Recommender System (IBRS). This knowledge-based recommender system provides recommendations that are generic in three dimensions: IBRS is (1) domain-independent, (2) language-independent, and (3) independent of the used social medium. To match user interests with items, the first are derived from the user's social media profile, enriched with a deeper semantic embedding obtained from the generic knowledge base DBpedia. These interests are used to extract personalized recommendations from a tagged item set from any domain, in any language. We also present the results of a validation of IBRS by a test user group of 44 people using two item sets from separate domains: greeting cards and holiday homes

    dbrec — Music Recommendations Using DBpedia

    Full text link
    Abstract. This paper describes the theoretical background and the im-plementation of dbrec, a music recommendation system built on top of DBpedia, offering recommendations for more than 39,000 bands and solo artists. We discuss the various challenges and lessons learnt while build-ing it, providing relevant insights for people developing applications con-suming Linked Data. Furthermore, we provide a user-centric evaluation of the system, notably by comparing it to last.fm

    A Systematic Literature Review of Linked Data-based Recommender Systems

    Get PDF
    Recommender Systems (RS) are software tools that use analytic technologies to suggest different items of interest to an end user. Linked Data is a set of best practices for publishing and connecting structured data on the Web. This paper presents a systematic literature review to summarize the state of the art in recommender systems that use structured data published as Linked Data for providing recommendations of items from diverse domains. It considers the most relevant research problems addressed and classifies RS according to how Linked Data has been used to provide recommendations. Furthermore, it analyzes contributions, limitations, application domains, evaluation techniques, and directions proposed for future research. We found that there are still many open challenges with regard to RS based on Linked Data in order to be efficient for real applications. The main ones are personalization of recommendations; use of more datasets considering the heterogeneity introduced; creation of new hybrid RS for adding information; definition of more advanced similarity measures that take into account the large amount of data in Linked Data datasets; and implementation of testbeds to study evaluation techniques and to assess the accuracy scalability and computational complexity of RS

    Recommender Systems based on Linked Data

    Get PDF
    Backgrounds: The increase in the amount of structured data published using the principles of Linked Data, means that now it is more likely to find resources in the Web of Data that describe real life concepts. However, discovering resources related to any given resource is still an open research area. This thesis studies Recommender Systems (RS) that use Linked Data as a source for generating recommendations exploiting the large amount of available resources and the relationships among them. Aims: The main objective of this study was to propose a recommendation tech- nique for resources considering semantic relationships between concepts from Linked Data. The specific objectives were: (i) Define semantic relationships derived from resources taking into account the knowledge found in Linked Data datasets. (ii) Determine semantic similarity measures based on the semantic relationships derived from resources. (iii) Propose an algorithm to dynami- cally generate automatic rankings of resources according to defined similarity measures. Methodology: It was based on the recommendations of the Project management Institute and the Integral Model for Engineering Professionals (Universidad del Cauca). The first one for managing the project, and the second one for developing the experimental prototype. Accordingly, the main phases were: (i) Conceptual base generation for identifying the main problems, objectives and the project scope. A Systematic Literature Review was conducted for this phase, which highlighted the relationships and similarity measures among resources in Linked Data, and the main issues, features, and types of RS based on Linked Data. (ii) Solution development is about designing and developing the experimental prototype for testing the algorithms studied in this thesis. Results: The main results obtained were: (i) The first Systematic Literature Re- view on RS based on Linked Data. (ii) A framework to execute and an- alyze recommendation algorithms based on Linked Data. (iii) A dynamic algorithm for resource recommendation based on on the knowledge of Linked Data relationships. (iv) A comparative study of algorithms for RS based on Linked Data. (v) Two implementations of the proposed framework. One with graph-based algorithms and other with machine learning algorithms. (vi) The application of the framework to various scenarios to demonstrate its feasibility within the context of real applications. Conclusions: (i) The proposed framework demonstrated to be useful for develop- ing and evaluating different configurations of algorithms to create novel RS based on Linked Data suitable to users’ requirements, applications, domains and contexts. (ii) The layered architecture of the proposed framework is also useful towards the reproducibility of the results for the research community. (iii) Linked data based RS are useful to present explanations of the recommen- dations, because of the graph structure of the datasets. (iv) Graph-based algo- rithms take advantage of intrinsic relationships among resources from Linked Data. Nevertheless, their execution time is still an open issue. Machine Learn- ing algorithms are also suitable, they provide functions useful to deal with large amounts of data, so they can help to improve the performance (execution time) of the RS. However most of them need a training phase that require to know a priory the application domain in order to obtain reliable results. (v) A log- ical evolution of RS based on Linked Data is the combination of graph-based with machine learning algorithms to obtain accurate results while keeping low execution times. However, research and experimentation is still needed to ex- plore more techniques from the vast amount of machine learning algorithms to determine the most suitable ones to deal with Linked Data

    Content Recommendation Through Linked Data

    Get PDF
    Nowadays, people can easily obtain a huge amount of information from the Web, but often they have no criteria to discern it. This issue is known as information overload. Recommender systems are software tools to suggest interesting items to users and can help them to deal with a vast amount of information. Linked Data is a set of best practices to publish data on the Web, and it is the basis of the Web of Data, an interconnected global dataspace. This thesis discusses how to discover information useful for the user from the vast amount of structured data, and notably Linked Data available on the Web. The work addresses this issue by considering three research questions: how to exploit existing relationships between resources published on the Web to provide recommendations to users; how to represent the user and his context to generate better recommendations for the current situation; and how to effectively visualize the recommended resources and their relationships. To address the first question, the thesis proposes a new algorithm based on Linked Data which exploits existing relationships between resources to recommend related resources. The algorithm was integrated into a framework to deploy and evaluate Linked Data based recommendation algorithms. In fact, a related problem is how to compare them and how to evaluate their performance when applied to a given dataset. The user evaluation showed that our algorithm improves the rate of new recommendations, while maintaining a satisfying prediction accuracy. To represent the user and their context, this thesis presents the Recommender System Context ontology, which is exploited in a new context-aware approach that can be used with existing recommendation algorithms. The evaluation showed that this method can significantly improve the prediction accuracy. As regards the problem of effectively visualizing the recommended resources and their relationships, this thesis proposes a visualization framework for DBpedia (the Linked Data version of Wikipedia) and mobile devices, which is designed to be extended to other datasets. In summary, this thesis shows how it is possible to exploit structured data available on the Web to recommend useful resources to users. Linked Data were successfully exploited in recommender systems. Various proposed approaches were implemented and applied to use cases of Telecom Italia

    Semantic Selection of Internet Sources through SWRL Enabled OWL Ontologies

    Get PDF
    This research examines the problem of Information Overload (IO) and give an overview of various attempts to resolve it. Furthermore, argue that instead of fighting IO, it is advisable to start learning how to live with it. It is unlikely that in modern information age, where users are producer and consumer of information, the amount of data and information generated would decrease. Furthermore, when managing IO, users are confined to the algorithms and policies of commercial Search Engines and Recommender Systems (RSs), which create results that also add to IO. this research calls to initiate a change in thinking: this by giving greater power to users when addressing the relevance and accuracy of internet searches, which helps in IO. However powerful search engines are, they do not process enough semantics in the moment when search queries are formulated. This research proposes a semantic selection of internet sources, through SWRL enabled OWL ontologies. the research focuses on SWT and its Stack because they (a)secure the semantic interpretation of the environments where internet searches take place and (b) guarantee reasoning that results in the selection of suitable internet sources in a particular moment of internet searches. Therefore, it is important to model the behaviour of users through OWL concepts and reason upon them in order to address IO when searching the internet. Thus, user behaviour is itemized through user preferences, perceptions and expectations from internet searches. The proposed approach in this research is a Software Engineering (SE) solution which provides computations based on the semantics of the environment stored in the ontological model
    corecore