38,172 research outputs found

    Deep Learning for Semantic Part Segmentation with High-Level Guidance

    Full text link
    In this work we address the task of segmenting an object into its parts, or semantic part segmentation. We start by adapting a state-of-the-art semantic segmentation system to this task, and show that a combination of a fully-convolutional Deep CNN system coupled with Dense CRF labelling provides excellent results for a broad range of object categories. Still, this approach remains agnostic to high-level constraints between object parts. We introduce such prior information by means of the Restricted Boltzmann Machine, adapted to our task and train our model in an discriminative fashion, as a hidden CRF, demonstrating that prior information can yield additional improvements. We also investigate the performance of our approach ``in the wild'', without information concerning the objects' bounding boxes, using an object detector to guide a multi-scale segmentation scheme. We evaluate the performance of our approach on the Penn-Fudan and LFW datasets for the tasks of pedestrian parsing and face labelling respectively. We show superior performance with respect to competitive methods that have been extensively engineered on these benchmarks, as well as realistic qualitative results on part segmentation, even for occluded or deformable objects. We also provide quantitative and extensive qualitative results on three classes from the PASCAL Parts dataset. Finally, we show that our multi-scale segmentation scheme can boost accuracy, recovering segmentations for finer parts.Comment: 11 pages (including references), 3 figures, 2 table

    DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs

    Get PDF
    In this work we address the task of semantic image segmentation with Deep Learning and make three main contributions that are experimentally shown to have substantial practical merit. First, we highlight convolution with upsampled filters, or 'atrous convolution', as a powerful tool in dense prediction tasks. Atrous convolution allows us to explicitly control the resolution at which feature responses are computed within Deep Convolutional Neural Networks. It also allows us to effectively enlarge the field of view of filters to incorporate larger context without increasing the number of parameters or the amount of computation. Second, we propose atrous spatial pyramid pooling (ASPP) to robustly segment objects at multiple scales. ASPP probes an incoming convolutional feature layer with filters at multiple sampling rates and effective fields-of-views, thus capturing objects as well as image context at multiple scales. Third, we improve the localization of object boundaries by combining methods from DCNNs and probabilistic graphical models. The commonly deployed combination of max-pooling and downsampling in DCNNs achieves invariance but has a toll on localization accuracy. We overcome this by combining the responses at the final DCNN layer with a fully connected Conditional Random Field (CRF), which is shown both qualitatively and quantitatively to improve localization performance. Our proposed "DeepLab" system sets the new state-of-art at the PASCAL VOC-2012 semantic image segmentation task, reaching 79.7% mIOU in the test set, and advances the results on three other datasets: PASCAL-Context, PASCAL-Person-Part, and Cityscapes. All of our code is made publicly available online.Comment: Accepted by TPAM

    Deep Occlusion Reasoning for Multi-Camera Multi-Target Detection

    Full text link
    People detection in single 2D images has improved greatly in recent years. However, comparatively little of this progress has percolated into multi-camera multi-people tracking algorithms, whose performance still degrades severely when scenes become very crowded. In this work, we introduce a new architecture that combines Convolutional Neural Nets and Conditional Random Fields to explicitly model those ambiguities. One of its key ingredients are high-order CRF terms that model potential occlusions and give our approach its robustness even when many people are present. Our model is trained end-to-end and we show that it outperforms several state-of-art algorithms on challenging scenes

    Holistic, Instance-Level Human Parsing

    Full text link
    Object parsing -- the task of decomposing an object into its semantic parts -- has traditionally been formulated as a category-level segmentation problem. Consequently, when there are multiple objects in an image, current methods cannot count the number of objects in the scene, nor can they determine which part belongs to which object. We address this problem by segmenting the parts of objects at an instance-level, such that each pixel in the image is assigned a part label, as well as the identity of the object it belongs to. Moreover, we show how this approach benefits us in obtaining segmentations at coarser granularities as well. Our proposed network is trained end-to-end given detections, and begins with a category-level segmentation module. Thereafter, a differentiable Conditional Random Field, defined over a variable number of instances for every input image, reasons about the identity of each part by associating it with a human detection. In contrast to other approaches, our method can handle the varying number of people in each image and our holistic network produces state-of-the-art results in instance-level part and human segmentation, together with competitive results in category-level part segmentation, all achieved by a single forward-pass through our neural network.Comment: Poster at BMVC 201
    • …
    corecore