7,492 research outputs found

    Automatic landmark annotation and dense correspondence registration for 3D human facial images

    Full text link
    Dense surface registration of three-dimensional (3D) human facial images holds great potential for studies of human trait diversity, disease genetics, and forensics. Non-rigid registration is particularly useful for establishing dense anatomical correspondences between faces. Here we describe a novel non-rigid registration method for fully automatic 3D facial image mapping. This method comprises two steps: first, seventeen facial landmarks are automatically annotated, mainly via PCA-based feature recognition following 3D-to-2D data transformation. Second, an efficient thin-plate spline (TPS) protocol is used to establish the dense anatomical correspondence between facial images, under the guidance of the predefined landmarks. We demonstrate that this method is robust and highly accurate, even for different ethnicities. The average face is calculated for individuals of Han Chinese and Uyghur origins. While fully automatic and computationally efficient, this method enables high-throughput analysis of human facial feature variation.Comment: 33 pages, 6 figures, 1 tabl

    SuperPoint: Self-Supervised Interest Point Detection and Description

    Full text link
    This paper presents a self-supervised framework for training interest point detectors and descriptors suitable for a large number of multiple-view geometry problems in computer vision. As opposed to patch-based neural networks, our fully-convolutional model operates on full-sized images and jointly computes pixel-level interest point locations and associated descriptors in one forward pass. We introduce Homographic Adaptation, a multi-scale, multi-homography approach for boosting interest point detection repeatability and performing cross-domain adaptation (e.g., synthetic-to-real). Our model, when trained on the MS-COCO generic image dataset using Homographic Adaptation, is able to repeatedly detect a much richer set of interest points than the initial pre-adapted deep model and any other traditional corner detector. The final system gives rise to state-of-the-art homography estimation results on HPatches when compared to LIFT, SIFT and ORB.Comment: Camera-ready version for CVPR 2018 Deep Learning for Visual SLAM Workshop (DL4VSLAM2018

    DeepMatching: Hierarchical Deformable Dense Matching

    Get PDF
    We introduce a novel matching algorithm, called DeepMatching, to compute dense correspondences between images. DeepMatching relies on a hierarchical, multi-layer, correlational architecture designed for matching images and was inspired by deep convolutional approaches. The proposed matching algorithm can handle non-rigid deformations and repetitive textures and efficiently determines dense correspondences in the presence of significant changes between images. We evaluate the performance of DeepMatching, in comparison with state-of-the-art matching algorithms, on the Mikolajczyk (Mikolajczyk et al 2005), the MPI-Sintel (Butler et al 2012) and the Kitti (Geiger et al 2013) datasets. DeepMatching outperforms the state-of-the-art algorithms and shows excellent results in particular for repetitive textures.We also propose a method for estimating optical flow, called DeepFlow, by integrating DeepMatching in the large displacement optical flow (LDOF) approach of Brox and Malik (2011). Compared to existing matching algorithms, additional robustness to large displacements and complex motion is obtained thanks to our matching approach. DeepFlow obtains competitive performance on public benchmarks for optical flow estimation

    Recognition of Arabic handwritten words

    Get PDF
    Recognizing Arabic handwritten words is a difficult problem due to the deformations of different writing styles. Moreover, the cursive nature of the Arabic writing makes correct segmentation of characters an almost impossible task. While there are many sub systems in an Arabic words recognition system, in this work we develop a sub system to recognize Part of Arabic Words (PAW). We try to solve this problem using three different approaches, implicit segmentation and two variants of holistic approach. While Rothacker found similar conclusions while this work is being prepared, we report the difficulty in locating characters in PAW using Scale Invariant Feature Transforms under the first approach. In the second and third approaches, we use holistic approach to recognize PAW using Support Vector Machine (SVM) and Active Shape Models (ASM). While there are few works that use SVM to recognize PAW, they use a small dataset; we use a large dataset and a different set of features. We also explain the errors SVM and ASM make and propose some remedies to these errors as future work

    Deep Convolutional Ranking for Multilabel Image Annotation

    Full text link
    Multilabel image annotation is one of the most important challenges in computer vision with many real-world applications. While existing work usually use conventional visual features for multilabel annotation, features based on Deep Neural Networks have shown potential to significantly boost performance. In this work, we propose to leverage the advantage of such features and analyze key components that lead to better performances. Specifically, we show that a significant performance gain could be obtained by combining convolutional architectures with approximate top-kk ranking objectives, as thye naturally fit the multilabel tagging problem. Our experiments on the NUS-WIDE dataset outperforms the conventional visual features by about 10%, obtaining the best reported performance in the literature
    • …
    corecore