577 research outputs found

    Fast LTL Satisfiability Checking by SAT Solvers

    Full text link
    Satisfiability checking for Linear Temporal Logic (LTL) is a fundamental step in checking for possible errors in LTL assertions. Extant LTL satisfiability checkers use a variety of different search procedures. With the sole exception of LTL satisfiability checking based on bounded model checking, which does not provide a complete decision procedure, LTL satisfiability checkers have not taken advantage of the remarkable progress over the past 20 years in Boolean satisfiability solving. In this paper, we propose a new LTL satisfiability-checking framework that is accelerated using a Boolean SAT solver. Our approach is based on the variant of the \emph{obligation-set method}, which we proposed in earlier work. We describe here heuristics that allow the use of a Boolean SAT solver to analyze the obligations for a given LTL formula. The experimental evaluation indicates that the new approach provides a a significant performance advantage

    GSTE is partitioned model checking

    Get PDF
    Verifying whether an ω-regular property is satisfied by a finite-state system is a core problem in model checking. Standard techniques build an automaton with the complementary language, compute its product with the system, and then check for emptiness. Generalized symbolic trajectory evaluation (GSTE) has been recently proposed as an alternative approach, extending the computationally efficient symbolic trajectory evaluation (STE) to general ω-regular properties. In this paper, we show that the GSTE algorithms are essentially a partitioned version of standard symbolic model-checking (SMC) algorithms, where the partitioning is driven by the property under verification. We export this technique of property-driven partitioning to SMC and show that it typically does speed up SMC algorithm

    Synthesis of Switching Protocols from Temporal Logic Specifications

    Get PDF
    We propose formal means for synthesizing switching protocols that determine the sequence in which the modes of a switched system are activated to satisfy certain high-level specifications in linear temporal logic. The synthesized protocols are robust against exogenous disturbances on the continuous dynamics. Two types of finite transition systems, namely under- and over-approximations, that abstract the behavior of the underlying continuous dynamics are defined. In particular, we show that the discrete synthesis problem for an under-approximation can be formulated as a model checking problem, whereas that for an over-approximation can be transformed into a two-player game. Both of these formulations are amenable to efficient, off-the-shelf software tools. By construction, existence of a discrete switching strategy for the discrete synthesis problem guarantees the existence of a continuous switching protocol for the continuous synthesis problem, which can be implemented at the continuous level to ensure the correctness of the nonlinear switched system. Moreover, the proposed framework can be straightforwardly extended to accommodate specifications that require reacting to possibly adversarial external events. Finally, these results are illustrated using three examples from different application domains

    Proceedings of SUMo and CompoNet 2011

    Get PDF
    International audienc

    Explicit or Symbolic Translation of Linear Temporal Logic to Automata

    Get PDF
    Formal verification techniques are growing increasingly vital for the development of safety-critical software and hardware in practice. Techniques such as requirements-based design and model checking for system verification have been successfully used to verify systems for air traffic control, airplane separation assurance, autopilots, CPU logic designs, life-support, medical equipment, and other functions that ensure human safety. Formal behavioral specifications written early in the system-design process and communicated across all design phases increase the efficiency, consistency, and quality of the system under development. We argue that to prevent introducing design or verification errors, it is crucial to test specifications for satisfiability. We advocate for the adaptation of a new sanity check via satisfiability checking for property assurance. Our focus here is on specifications expressed in Linear Temporal Logic (LTL). We demonstrate that LTL satisfiability checking reduces to model checking and satisfiability checking for the specification, its complement, and a conjunction of all properties should be performed as a first step to LTL model checking. We report on an experimental investigation of LTL satisfiability checking. We introduce a large set of rigorous benchmarks to enable objective evaluation of LTL-to-automaton algorithms in terms of scalability, performance, correctness, and size of the automata produced. For explicit model checking, we use the Spin model checker; we tested all LTL-to-explicit automaton translation tools that were publicly available when we conducted our study. For symbolic model checking, we use CadenceSMV, NuSMV, and SAL-SMC for both LTL-to-symbolic automaton translation and to perform the satisfiability check. Our experiments result in two major findings. First, scalability, correctness, and other debilitating performance issues afflict most LTL translation tools. Second, for LTL satisfiability checking, the symbolic approach is clearly superior to the explicit approach. Ironically, the explicit approach to LTL-to-automata had been heavily studied while only one algorithm existed for LTL-to-symbolic automata. Since 1994, there had been essentially no new progress in encoding symbolic automata for BDD-based analysis. Therefore, we introduce a set of 30 symbolic automata encodings. The set consists of novel combinations of existing constructs, such as different LTL formula normal forms, with a novel transition-labeled symbolic automaton form, a new way to encode transitions, and new BDD variable orders based on algorithms for tree decomposition of graphs. An extensive set of experiments demonstrates that these encodings translate to significant, sometimes exponential, improvement over the current standard encoding for symbolic LTL satisfiability checking. Building upon these ideas, we return to the explicit automata domain and focus on the most common type of specifications used in industrial practice: safety properties. We show that we can exploit the inherent determinism of safety properties to create a set of 26 explicit automata encodings comprised of novel aspects including: state numbers versus state labels versus a state look-up table, finite versus infinite acceptance conditions, forward-looking versus backward-looking transition encodings, assignment-based versus BDD-based alphabet representation, state and transition minimization, edge abbreviation, trap-state elimination, and determinization either on-the-fly or up-front using the subset construction. We conduct an extensive experimental evaluation and identify an encoding that offers the best performance in explicit LTL model checking time and is constantly faster than the previous best explicit automaton encoding algorithm

    Alternative Automata-based Approaches to Probabilistic Model Checking

    Get PDF
    In this thesis we focus on new methods for probabilistic model checking (PMC) with linear temporal logic (LTL). The standard approach translates an LTL formula into a deterministic ω-automaton with a double-exponential blow up. There are approaches for Markov chain analysis against LTL with exponential runtime, which motivates the search for non-deterministic automata with restricted forms of non-determinism that make them suitable for PMC. For MDPs, the approach via deterministic automata matches the double-exponential lower bound, but a practical application might benefit from approaches via non-deterministic automata. We first investigate good-for-games (GFG) automata. In GFG automata one can resolve the non-determinism for a finite prefix without knowing the infinite suffix and still obtain an accepting run for an accepted word. We explain that GFG automata are well-suited for MDP analysis on a theoretic level, but our experiments show that GFG automata cannot compete with deterministic automata. We have also researched another form of pseudo-determinism, namely unambiguity, where for every accepted word there is exactly one accepting run. We present a polynomial-time approach for PMC of Markov chains against specifications given by an unambiguous Büchi automaton (UBA). Its two key elements are the identification whether the induced probability is positive, and if so, the identification of a state set inducing probability 1. Additionally, we examine the new symbolic Muller acceptance described in the Hanoi Omega Automata Format, which we call Emerson-Lei acceptance. It is a positive Boolean formula over unconditional fairness constraints. We present a construction of small deterministic automata using Emerson-Lei acceptance. Deciding, whether an MDP has a positive maximal probability to satisfy an Emerson-Lei acceptance, is NP-complete. This fact has triggered a DPLL-based algorithm for deciding positiveness
    corecore