7,072 research outputs found

    Network-Based Elucidation of Human Disease Similarities Reveals Common Functional Modules Enriched for Pluripotent Drug Targets

    Get PDF
    Current work in elucidating relationships between diseases has largely been based on pre-existing knowledge of disease genes. Consequently, these studies are limited in their discovery of new and unknown disease relationships. We present the first quantitative framework to compare and contrast diseases by an integrated analysis of disease-related mRNA expression data and the human protein interaction network. We identified 4,620 functional modules in the human protein network and provided a quantitative metric to record their responses in 54 diseases leading to 138 significant similarities between diseases. Fourteen of the significant disease correlations also shared common drugs, supporting the hypothesis that similar diseases can be treated by the same drugs, allowing us to make predictions for new uses of existing drugs. Finally, we also identified 59 modules that were dysregulated in at least half of the diseases, representing a common disease-state “signature”. These modules were significantly enriched for genes that are known to be drug targets. Interestingly, drugs known to target these genes/proteins are already known to treat significantly more diseases than drugs targeting other genes/proteins, highlighting the importance of these core modules as prime therapeutic opportunities

    DDR: efficient computational method to predict drug-target interactions using graph mining and machine learning approaches.

    Get PDF
    Motivation: Finding computationally drug-target interactions (DTIs) is a convenient strategy to identify new DTIs at low cost with reasonable accuracy. However, the current DTI prediction methods suffer the high false positive prediction rate. Results: We developed DDR, a novel method that improves the DTI prediction accuracy. DDR is based on the use of a heterogeneous graph that contains known DTIs with multiple similarities between drugs and multiple similarities between target proteins. DDR applies non-linear similarity fusion method to combine different similarities. Before fusion, DDR performs a pre-processing step where a subset of similarities is selected in a heuristic process to obtain an optimized combination of similarities. Then, DDR applies a random forest model using different graph-based features extracted from the DTI heterogeneous graph. Using 5-repeats of 10-fold cross-validation, three testing setups, and the weighted average of area under the precision-recall curve (AUPR) scores, we show that DDR significantly reduces the AUPR score error relative to the next best start-of-the-art method for predicting DTIs by 34% when the drugs are new, by 23% when targets are new and by 34% when the drugs and the targets are known but not all DTIs between them are not known. Using independent sources of evidence, we verify as correct 22 out of the top 25 DDR novel predictions. This suggests that DDR can be used as an efficient method to identify correct DTIs. Availability and implementation: The data and code are provided at https://bitbucket.org/RSO24/ddr/. Contact: [email protected]. Supplementary information: Supplementary data are available at Bioinformatics online

    Data integration for the analysis of uncharacterized proteins in Mycobacterium tuberculosis

    Get PDF
    Includes abstract.Includes bibliographical references (leaves 126-150).Mycobacterium tuberculosis is a bacterial pathogen that causes tuberculosis, a leading cause of human death worldwide from infectious diseases, especially in Africa. Despite enormous advances achieved in recent years in controlling the disease, tuberculosis remains a public health challenge. The contribution of existing drugs is of immense value, but the deadly synergy of the disease with Human Immunodeficiency Virus (HIV) or Acquired Immunodeficiency Syndrome (AIDS) and the emergence of drug resistant strains are threatening to compromise gains in tuberculosis control. In fact, the development of active tuberculosis is the outcome of the delicate balance between bacterial virulence and host resistance, which constitute two distinct and independent components. Significant progress has been made in understanding the evolution of the bacterial pathogen and its interaction with the host. The end point of these efforts is the identification of virulence factors and drug targets within the bacterium in order to develop new drugs and vaccines for the eradication of the disease
    corecore