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Abstract

Motivation: Finding computationally drug–target interactions (DTIs) is a convenient strategy to

identify new DTIs at low cost with reasonable accuracy. However, the current DTI prediction meth-

ods suffer the high false positive prediction rate.

Results: We developed DDR, a novel method that improves the DTI prediction accuracy. DDR is

based on the use of a heterogeneous graph that contains known DTIs with multiple similarities

between drugs and multiple similarities between target proteins. DDR applies non-linear similarity

fusion method to combine different similarities. Before fusion, DDR performs a pre-processing step

where a subset of similarities is selected in a heuristic process to obtain an optimized combination

of similarities. Then, DDR applies a random forest model using different graph-based features

extracted from the DTI heterogeneous graph. Using 5-repeats of 10-fold cross-validation, three test-

ing setups, and the weighted average of area under the precision-recall curve (AUPR) scores, we

show that DDR significantly reduces the AUPR score error relative to the next best start-of-the-art

method for predicting DTIs by 31% when the drugs are new, by 23% when targets are new and by

34% when the drugs and the targets are known but not all DTIs between them are not known.

Using independent sources of evidence, we verify as correct 22 out of the top 25 DDR novel predic-

tions. This suggests that DDR can be used as an efficient method to identify correct DTIs.

Availability and implementation: The data and code are provided at https://bitbucket.org/RSO24/ddr/.

Contact: vladimir.bajic@kaust.edu.sa

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Drug discovery is the process through which potential beneficial

treatment effects or medical uses of a new drug candidate are identi-

fied. Distinct phases of drug discovery and development define the

initial stage of target identification and validation, compound leads

identification, validation and optimization, and different types of

preclinical and clinical trials until the final approval by the Food

and Drug Administration (FDA) (Paul et al., 2010) is reached.

Drugs function through interaction with various molecular targets.

We call such interaction drug–target interactions (DTIs). Proteins

are one useful group of such targets. Through binding, drugs can

either enhance or inhibit functions carried out by proteins

(Overington et al., 2006; Santos et al., 2017) and thus affect the dis-

ease conditions. Bringing a new drug to the market is a highly chal-

lenging and complex process in terms of time and cost. Moreover,

the number of newly approved drugs by the FDA is decreasing, illus-

trating the productivity decline in drug discovery and development

(Swinney and Anthony, 2011). However, studies showed that most
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of the FDA-approved drug molecules exhibit poly-pharmacological

properties, i.e. drugs can have interaction with multiple targets,

which are not their primary therapeutic targets (i.e. drugs have off-

target molecules) (Cichonska et al., 2015), and this is frequently the

major cause of undesirable side-effects. One interesting and useful

objective is to link the newly identified DTIs of a known drug to the

treatment of diseases that are different from diseases for which the

drug has been originally developed (Cichonska et al., 2015; Li et al.,

2016; Shim and Liu, 2014). The availability of public biomedical

databases along with the development of computational approaches

has made it possible to provide useful frameworks to partially over-

come limitations of the traditional experimental approaches (Vilar

and Hripcsak, 2016) and help in finding a new association for the

existing drugs with off-target effects. Identifying computationally

highly likely DTIs for a known drug can be then employed to iden-

tify potential new uses of the drug in question, and this makes a use-

ful strategy in drug repurposing (Chen et al., 2016; Daminelli et al.,

2015; Wu et al., 2017). A part of such solution is the identification

of novel DTIs that play an important role in the discovery of addi-

tional applications for known drugs, as well as in the understanding

of drug’s modes of action (Overington et al., 2006; Santos et al.,

2017; Schenone et al., 2013). This necessitates development of accu-

rate computational approaches to focus on a smaller number of

highly likely targets of a drug for the follow-up experimental valida-

tion. However, predicting correct DTI is not sufficient for itself to

infer what effect such interaction may have. Additional steps may be

needed, such as, for example, to show inhibition of target expres-

sion. One approach for computationally inferring such effects may

be the utilization of predictive models of activity in appropriate bio-

logical assays (Soufan et al., 2016; Soufan et al., 2015) as those in

the PubChem resource. As summarized in recent reviews (Chen

et al., 2016; Santos et al., 2017), a wide range of databases, web

tools and computational methods have emerged with the potential

to predict DTIs by learning from interaction data supplemented

with information on the similarities among drugs and similarities

among proteins (Daminelli et al., 2015; Wu et al., 2017). However,

confirming whether a drug could interact with a target protein

requires an additional effort. This is owing to the relatively limited

information about interactions between drugs and target proteins

(Dobson, 2004; Kanehisa et al., 2006; Menni et al., 2017), as well

as the poor characterization of proteins as drug targets (Santos

et al., 2017).

Early attempts in computational prediction of DTIs can be cate-

gorized into two main groups and include docking simulations and

ligand-based approaches (Cheng et al., 2007; Keiser et al., 2007).

Docking methods consider the 3D structure of target proteins.

However, this approach is extensively time-consuming, and the

structural information of targets is not available for all target proteins.

Ligand-based methods compare a query ligand with a set of known

ligands with target proteins. However, it may not perform well in

cases the number of known ligands with target proteins is small.

Public data sources have promoted the development of various

strategies for repurposing drugs including genome, phenome, drug

chemical structures, biological interactome, biomedical literature

text and biological bioassays (Li et al., 2016). Moreover, the accessi-

bility of big data sources, through several databases and biomedical

literature of DTI information, provide a useful way to extract differ-

ent biological interaction profiles and signatures (or descriptors) of

drugs and target proteins to discover novel DTIs (Ba-Alawi et al.,

2016; Cheng et al., 2012a,b; Ding et al., 2014; Mitchell, 2001;

Perlman et al., 2011; Vilar and Hripcsak, 2016; Wu et al., 2017;

Yamanishi et al., 2010). On the basis of the guilt-by-association

principle, in which chemically similar drugs tend to interact with

similar proteins, many methods have been proposed for DTI predic-

tion based on the consideration of similarity measures between

drugs or similarities between proteins. Such prediction methods are

based on graph inference (Alaimo, 2013; Ba-Alawi et al., 2016;

Bleakley and Yamanishi, 2009; Chen et al., 2012a,b; Seal et al.,

2015; Wang et al., 2013), machine-learning algorithms (Hao et al.,

2017; Lim et al., 2016; Liu et al., 2016; Mei et al., 2013; Perlman

et al., 2011; Soufan et al., 2016; van Laarhoven et al., 2011; Yuan

et al., 2016), text mining (Zhu et al., 2005) and semantic linked

data (Chen et al., 2012a; Fu et al., 2016; Tari and Patel, 2014; Zhu

et al., 2014).

Recently, several methods are developed to integrate heterogene-

ous information related to the drug, target protein, and their interac-

tion data, to provide effective and efficient ways to predict new

DTIs (Hao et al., 2017; Mei et al., 2013). These methods utilize var-

ious types of profiles for drugs and proteins constructed with differ-

ent biological data. Such DTI prediction methods were developed

based on the idea of utilizing heterogeneous networks of known

DTIs, similarity between drugs and similarity between target pro-

teins (Hao et al., 2017; Nascimento et al., 2016; Perlman et al.,

2011; Zong et al., 2017). These methods demonstrate that utilizing

different measures of similarity between drugs and target proteins

results in improved performance compared to other methods that

are based on using only single similarity for drugs and single similar-

ity for target proteins. Moreover, a prediction method (Hao et al.,

2017) that is based on non-linear integration of similarity measures

shows better performance than the other methods based on the line-

arly combined similarity measures (Mei et al., 2013; Nascimento

et al., 2016; van Laarhoven et al., 2011). However, these studies

indicated that the DTI prediction performance of different methods

varies significantly with and depends heavily on the similarity meas-

ures used. These require development of computational methods

that optimize combination of multiple similarity measures with the

aim to improve the DTI prediction accuracy (for more detailed

information see Supplementary Material, Related work).

In this study, aiming to further improve the accuracy of DTI pre-

diction, we developed DDR, an efficient DTI prediction method that

in a novel way determines through a heuristic method an optimized

combination of similarity measures between drugs and between tar-

get proteins used in the prediction model. To predict DTIs, DDR

integrates information from different types of drug–drug and target–

target similarity measures and then, it applies a random forest (RF)

model using graph-based features. On different representative data-

sets and under various test setups, and using different performance

measure, we show that DDR significantly outperforms the other

state-of-the-arts methods by dramatically reducing the error. Using

independent sources of evidence, we verified as correct 22 out of the

top 25 DDR novel predictions. This suggests that DDR can be used

as an efficient method to identify correct DTIs.

2 Materials

2.1 Datasets
2.1.1 DTI data

Five datasets were used to evaluate the performance of the proposed

DDR method in DTI prediction. Each dataset contains three types

of information: (i) the known DTIs for humans, (ii) multiple drug

similarity measures and (iii) multiple target proteins similarity

measures.
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A frequently considered gold standard dataset (we name it

Yamanishi_08) was originally compiled by Yamanishi et al. (2008)

and was used as a reference in many studies (Ba-Alawi et al., 2016;

Lim et al., 2016; Daminelli et al., 2015; Mei et al., 2013). This data-

set contains known DTIs as retrieved from KEGG BRITE (Kanehisa

et al., 2006), BRENDA (Schomburg et al., 2004), SuperTarget

(Gunther et al., 2008) and DrugBank databases (Wishart et al.,

2008). In Yamanishi_08, the information on DTI is classified

according to the target proteins of drugs into the following four

groups: (i) enzymes (E), (ii) ion channels (IC), (iii) G-protein-coupled

receptors (GPCR) and (iv) nuclear receptors (NR). Thus,

Yamanishi_08 dataset is composed of the four datasets correspond-

ing to the classes of target proteins.

The fifth dataset is DrugBank_FDA, which is extracted from

5.0.3 version of DrugBank database (Wishart et al., 2008). We only

extracted DTI information of drugs approved by the FDA and single

human target proteins; these proteins are not part of protein com-

plexes. Table 1 summarizes the statistics of these datasets. Note

that, the ratios of known (positive) versus non-existing (not known,

negative) DTIs in all datasets are variable. This reflects practical sit-

uations where the number of true DTIs is considered to be much

smaller than that of non-interacting drug–targets.

2.1.2 Similarity measures for drugs and for target proteins

We computed multiple similarity measures for drugs and for target

proteins, respectively, where all similarity values were normalized to

the range [0, 1].

For the first four benchmark datasets from Yamanishi_08, the

similarities between drug pairs and between target protein pairs

were calculated based on information from different sources and

from Nascimento et al. (2016). For drugs, distinct chemical struc-

ture fingerprints, side-effects profiles and the Gaussian interaction

profile (GIP) were considered as drug information sources for calcu-

lation of the drug similarities. On the other hand, the similarities of

target proteins were calculated based on various amino acid

sequence profiles of proteins, as well as different parameterizations

of the Mismatch (MIS) and the Spectrum (SPEC) kernels, target pro-

teins functional annotation based on Gene Ontology (GO) terms,

proximity within the protein–protein interaction (PPI) network and

the GIP for target proteins.

For the fifth benchmark dataset, DrugBank_FDA, we computed

different similarity measures between drugs based on: different types

of molecular fingerprints, drug interaction profile, drug side-effects

profile, drug profile of the anatomical therapeutic class (ATC) cod-

ing system, drug-induced gene expression profile, drug disease pro-

files, drug pathways profiles and GIP. Furthermore, different target

protein similarity measures were calculated based on protein amino

acid sequence, their GO annotations, proximity in the PPI network,

GIP, protein domain profiles and gene expression similarity profiles

of protein encoding genes. Chemical structures of drugs were

extracted from DrugBank (Wishart et al., 2008), while the target

protein sequences were extracted from UniProt (Boutet et al., 2016).

Supplementary Table S1 shows the summary of multiple similarity

measures calculated for drugs and target proteins in the

DrugBank_FDA dataset, as well as describing their importance and

tools used to calculate them.

As a summary, all different similarity measures between drugs

and between target proteins for the first four datasets are recom-

puted/available and collected from Nascimento et al. (2016). For

DrugBank_FDA dataset, all different similarity measures between

drugs and between target proteins are calculated in this study, since

there is no available similarity measures data obtained for such

dataset.

3 Methods

3.1 Problem description
We define a set of DTIs, which consists of a set of drugs D and a

set of target proteins T, where D¼ {di, i¼1, . . ., m} and T¼ {tj,

j¼1, . . ., n}, in which m represents the number of drugs and n repre-

sents the number of target proteins. The interactions between D and

T are represented as a binary matrix Y such that if di interacts with

tj, then yij¼1, if not then yij¼0. We also define the set of similarity

matrices between drugs in D as Ds, where similarity matrices have

dimensions of m x m; we define the set of similarity matrices

between target proteins in T as Ts, where similarity matrices have

dimensions of n x n. Element values in different similarity matrices

represent how much are drugs or target proteins similar to each

other based on different measures. All elements in each matrix have

values in the range of [0, 1]. A similarity value close to 0 indicates

that two elements are not similar to each other while a similarity

value close to 1 represents the most similar elements. Given

the matrix Y, and matrices in Ds and Ts, our goal is to predict novel

(i.e. unknown) interactions in Y.

3.2 Description of the DDR method
The heterogeneous DTI graph is a weighted graph that is con-

structed with m nodes from the drug set and n nodes from the set of

target proteins. The edge between two drug nodes or two target pro-

tein nodes represents the similarity between them and is weighted by

the similarity value obtained from the similarity fusion step. The

edge between a drug and a target protein represents a known DTI

and is weighted by 1. A path structure of a path that starts at a D

node and ends up at a T node describes a subgraph that sequentially

links of drug and target protein nodes. For example, a path Drug1–

Drug2–Target1 connects the Drug1 node with the Target1 node

through the similarity edge between Drug1 and Drug2 and via the

interaction edge between Drug2 and Target1. The path structure of

this path is D–D–T. All paths with more than one edge and without

loops, starting at a D node and ending at a T node, and having the

same path structure define a path-category on the heterogeneous

DTI graph.

DDR workflow (Fig. 1) depicts several steps including: (i) infer-

ring interaction profile for new drugs and for new target proteins,

Table 1. Summary of the five datasets (Yamanishi_08 and DrugBank_FDA) used in this study

Datasets Target classes Number of drugs Number of target proteins Number of known DTIs

Yamanishi_08 NR 54 26 90

GPCR 223 95 635

IC 210 204 1476

E 445 664 2926

DrugBank_FDA Multi-class 1482 1408 9881
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(ii) similarity measure selection, (iii) similarity fusion, (iv) path-cate-

gory-based features extraction, (v) building DTI prediction model

using RF.

3.2.1 Inferring interaction profile

Inferring the DTIs profiles for new drugs and target proteins is used

only with the GIP similarity calculation. A drug is called new if it

does not have any known target protein to interact with, while a tar-

get protein is called new if it is not targeted by any known drug.

Since the GIP similarity is constructed based on training DTI data

only, the GIP similarity cannot be computed for drugs or target pro-

teins that do not have known DTIs in the training data. So, we

enhance the GIP similarity calculation by inferring interaction pro-

files for new drugs and for new target proteins, in cases where DTIs

for drugs or for target proteins are missing from the training data.

This inference is made based on the interaction profiles of such

drugs or target proteins. Drugs (or target proteins) with high similar-

ities to a new drug (or a new target protein) are said to be the neigh-

bors of the drug (the target protein). This interaction profile

inferring technique is based on Mei et al. (2013). For example, the

inferred value of interaction for a new drug with a specific target

protein is represented as the ratio of the sum of similarity values for

drug neighbors interacting with this target protein relative to the

total sum of all neighbors’ similarity values. For DDR, we subjec-

tively set the number of neighbors to 5.

3.2.2 Similarity selection: selection of an optimized set of similarities

Combining all similarity types may introduce noise in the data as

some similarities have more information than others. In order to

select a more robust similarity set, we implement similarity selection

procedure (Supplementary Figure S1) that is able to select a set of

informative and less-redundant set of similarities for drugs and for

target proteins, separately. This is done through a heuristic process,

where a subset of similarity measures is selected forming an

optimized (possibly the best) combination of similarities for our

problem.

To select set of informative similarities, our procedure goes as

follows:

(i) Calculate the average entropy for each similarity matrix to

determine how much information each similarity carries. For a simi-

larity matrix M (target–target similarity or drug–drug similarity) of

size k � k, where k represents the number of drugs (or target pro-

teins), with elements mi,j, we calculate entropy Ei for each row i as:

Ei ¼ �
Xk

j¼1
pijlog pij

� �
; where

pij ¼
mij

Pk
j¼1

mij

:

After that, we average the entropy values of all matrix rows to get

the final average entropy value that describes how informative a

similarity matrix is. (ii) Rank the matrices according to their average

entropy values in ascending order. The lower the average entropy

value is the less random information the similarity matrix carries.

Then, remove similarity matrices with high average entropy that

contain more random information with average entropy value

greater than c1log(k), where c1 is a constant that controls how much

information each similarity carries; thus, c1 controls level of entropy

to be selected; log(k) represents the maximum entropy value. (iii)

Calculate the pairwise similarity measure between similarity matri-

ces from different data sources, based on the Euclidean distance, as

follows. To assess the information overlap between any two similar-

ity matrices, we constructed the pairwise similarity matrix between

all similarity measures based on Euclidean distance as follows: given

two matrices for similarity measures A and B, we reorganize each

similarity matrix into vectors (VA and VB) and then compute the

Euclidean distance d as

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXk2

i¼1
VAi
� VBi

ð Þ2:
r

We converted distance values to similarity Es as

Es ¼
1

1þ d
:

(iv) After obtaining a set of informative similarities matrices, the

redundant similarity matrices are removed as follows: the procedure

starts with the similarity measure matrix having the lowest average

entropy value and eliminates all other similarity measure matrices

with Es value larger than a threshold c2. After that, the procedure

continues with the next similarity matrix in the ranked list until the

whole list of the similarity matrices is exhausted. At the end, the

remaining list of similarity measures is reported as the selected set

with small redundancy of informative similarity measures for drugs

and target proteins. In this study, we subjectively set c1 to 0.7 and c2

to 0.6. We applied this procedure to select the set of informative

less-redundant similarity measures of drugs and target proteins,

separately.

3.2.3 Similarity fusion

Given the selected subsets of similarity measures obtained previously

for drugs and for target proteins, respectively, the goal of the simi-

larity fusion step is to combine multiple similarity measures into one

final composite similarity that captures the necessary information

Fig. 1. Flowchart of DDR method. DDR consists of several steps including: (i)

Similarity selection, where a subset of similarity measures is selected in a

heuristic process. (ii) Similarity fusion, with the goal to combine the selected

similarity measures into one final composite similarity that combines infor-

mation from similarities determined in (i). (iii) Path-category-based feature

extraction, where the feature vector corresponds to drug and target protein

pairs, i.e. for ðdi ; tj Þ pair, features are determined as the vector composed of

the 12 (i, j) elements obtained by two graph-based scores, namely, n1(h, i, j)

and n2(h, i, j) for each specific path-category Ch, h¼1, 2, . . ., 6. (iv) Building

DTI prediction model using RF, where both positive and negative data are

provided; positive data contain known links between drugs and target pro-

teins and represent positive labels, while negative data contain unknown DTI

links that are treated as negative labels
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from different similarities. Thus, given a set of multiple similarity

measures for drugs and for target proteins, respectively, we com-

puted the final fused similarity measure following the similarity net-

work fusion (SNF) method developed in Wang et al. (2014). We

represent each similarity measure by k � k similarity matrix

M¼ (mi, j), where mi, j equals to the similarity value between di/dj or

ti/tj indicating how much they are similar.

The SNF combines multiple similarity measures into a single

fused similarity by a nonlinear method based on message-passing

theory. It iteratively updates every similarity network with informa-

tion from the other networks, using K-nearest neighbors, making it

more similar to the others. The SNF method can capture common as

well as complementary information across different measures of

similarities. We applied the SNF method to integrate multiple drug–

drug similarities and target–target similarities, separately.

3.2.4 Path-category-based features

After obtaining the combined similarity for drugs and for target pro-

teins, respectively, we augmented the combined similarities with the

known DTIs to construct a heterogeneous DTI graph. Based on this

heterogeneous graph, we extracted 12 path-category-based features

that we used to build a DTI prediction model. In this study, we work

with path-categories of lengths 2 and 3 (but not longer, because of the

computational cost). When we restrict paths to start at drug nodes and

end at target protein nodes, there are only two path-categories with

paths of length 2, having path structures (D–D–T) and (D–T–T),

and four path-categories with paths of length 3, having path structures

(D–D–D–T), (D–D–T–T), (D–T–D–T) and (D–T–T–T). Thus, we will

consider these six path-categories through which drug nodes could

connect to target protein nodes. We define matrices S1h and S2h associ-

ated with each path-category Ch, h¼1, 2, . . ., 6, that we consider. To

do this, we start with a given drug di to reach a given target protein tj
through a specific path-category Ch. We restrict traversing the graph to

retrieve all paths passing only through the K-nearest neighbors of drugs

to di and only through the K-nearest neighbors of target proteins to tj.

In this study, we subjectively set the number of nearest neighbors K to

5. The set of such paths we denote as Rijh. Next, for each path pq from

Rijh we calculate an edge-weight product value s obtained by multiply-

ing all weights wx of edges of pq as follows:

s h; i; j; qð Þ ¼
Y

8wx 2 pq ; pq 2 Rijh

wx:

Using the s values calculated for all paths pq from Rijh, we calculate

scores s1 and s2 as follows:

s1 h; i; jð Þ ¼
X

8q:pq 2 Rijh

s h; i; j; qð Þ:

Thus, for each path-category Ch, we obtained a matrix S1h with ele-

ments s1(h, i, j). Also, for each path-category Ch, we obtained a

matrix S2h with elements s2(h, i, j) determined as:

s2 h; i; jð Þ ¼ max8q:pq 2 Rijh
s h; i; j;qð Þð Þ:

Finally, we normalized matrices S1h and S2h to adjust for the overall

connectivity of the network, where the elements of the normalized

matrices are:

nr h; i; jð Þ ¼ sr h; i; jð ÞP
jsr h; i; jð Þ ;

where r ¼ 1 or 2. The normalized matrices are now N1h with elements

n1(h, i, j) and N2h with elements n2(h, i, j) calculated as shown above.

In total, DDR defines 12 different path-category-based matrices,

namely N1h, N2h, where h¼1, 2, . . ., 6, which contain feature val-

ues. These matrices have the same number of rows (corresponding

to drugs) and the same number of columns (corresponding to target

proteins).

3.2.5 RF classification model for DTI prediction

To predict DTI, DDR utilizes supervised machine learning model

based on the RF classifier (Ho, 1995). RF has been shown to be an

effective tool in prediction, as it runs efficiently on large datasets

and is less prone to over-fitting. We implemented the RF predictive

model using scikit-learn (Pedregosa et al., 2011). The inputs to the

RF correspond to drug and target protein pairs, i.e. for the ðdi; tjÞ
pair, the feature vector is determined as the vector composed of the

(i, j) elements of matrices N1h and N2h. Since h¼1, 2, . . ., 6, these

feature vectors contain 12 elements each. In order to learn from

highly imbalanced data, in this study we adjusted the RF class

weights to be inversely proportional to the number of class labels for

each class in the training data. Two important parameters are set

when building the RF model: The number of trees in the forest

(n_estimators) was set to be in the range of [100, 600] trees and a

function to measure the quality of a split (criterion) where we used

Gini index and entropy based functions. To construct the prediction

model, both positive and negative data are provided as either known

DTIs to represent positive labels or unknown DTIs that are treated

as negative labels.

3.3 Experimental setting and performance evaluation
To facilitate the comparison with other methods, we performed

cross-validation (CV) and hold-out type tests. First, we evaluated

the performance of the DDR method for DTI prediction using CV

experiments obtained under three different settings of prediction

tasks as in Pahikkala et al. (2015). The experiments were performed

separately for each dataset used in this study (the four gold standard

datasets from Yamanishi_08 and the DrugBank_FDA dataset). The

three prediction settings correspond to the cases when: (a) the drugs

are new, (b) the target proteins are new and (c) the drugs and their

target proteins are known but all interactions between them are not

necessarily known. Cases (a) and (b) correspond to the situation

when there are no DTIs in the training data for such drugs or target

proteins, while case (c) corresponds to the situation when there are

DTI in the training data for such drugs or target proteins. We name

settings (a), (b) and (c) as SD, ST and SP, respectively.

For each dataset, a prediction model in each setting is built using

a dataset of positive and negative labels split into the training and

testing sets. This procedure is followed for each fold in 10-fold CV

and the whole process is repeated 5 times, each time with a different

random seed used for random selection for the split into training

and testing sets. In each fold of the CV process, all interactions yij in

Y matrix that belong to the testing set in that fold are set to zero, i.e.

they were excluded from consideration. The resulting matrix with

removed testing DTIs is Ytrain. In each fold, the model learns interac-

tions from Ytrain and then constructs the GIP similarity. Then, we

select the best set of similarity measures (according to DDR’s heuris-

tic procedure). After that, we use all selected similarities separately

for drugs and separately for target proteins, to generate a fused simi-

larity matrix for drugs and a fused similarity matrix for target pro-

teins. Based on Ytrain and the two generated fused similarity

matrices, we construct a heterogeneous DTI graph, where we extract

path-category-based features as explained before, and score them

using two graph-based scores. Finally, we train the RF model on the
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training set for that fold until the best area under the precision-recall

(AUPR) is obtained. Then, using the trained model, we predict and

evaluate predictions on the testing set for that fold.

Moreover, we performed the hold-out tests derived from 9881

DTIs from DrugBank_FDA dataset under the same SD, ST and SP set-

tings of prediction tasks. In the hold-out test, we split the data into

80% for training and 20% for testing.

For each prediction model, at each fold in case of CV, we consid-

ered the following evaluation metrics: Based on the methods scores,

we define true positive (TP), false negative (FN), false positive (FP)

and true negative (TN). We calculate precision, recall and specificity

values as follows:

Precision ¼ TP

TPþ FP

Recall ¼ TP

TPþ FN

Specificity ¼ TN

TNþ FP

We construct precision-recall curve based on different precision and

recall values at different cut-offs. Also, we construct the area under

the ROC curve (AUC) at various threshold settings, based on differ-

ent recall values, and false positive rate (FPR) values, calculated as

1� specificity. Then, we calculate the AUPR and AUC, where the

values of AUPR and AUC, separately, over 5-repeats of 10-fold CVs

are averaged and reported as the measures of the model performance

for each dataset. As the positive and negative data in the datasets

used in this study are highly imbalanced, AUPR metric provides a

better quality estimate, since it punishes more heavily the existence

of FPs than is the case with AUC. Thus, in this study, we mainly

used AUPR values to evaluate the performance of the methods,

though we also reported the AUC values in Supplementary Material.

As a summary, for the purpose of the fair comparison with the other

methods, all methods are subjected to the exactly same conditions of

testing and the same datasets [(i) the five trials of 10-fold CV and the

same datasets, Yamanishi_08 and DrugBank_FDA dataset and (ii) the

same hold-out test based on DrugBank_FDA]. We point out that all

methods are evaluated using the same data splits to avoid any type of

unwanted bias. Also, we used only training data to develop models.

4 Results

4.1 Comparisons with the state-of-the-art algorithms
First, we compare our proposed DDR method with the following

state-of-the-art methods (for more detailed information see

Supplementary Material, Related work) namely: COSINE (Lim et al.,

2016), DNILMF (Hao et al., 2017), NRLMF (Liu et al., 2016),

KRONRLS-MKL (Nascimento et al., 2016) and BLM-NII (Mei et al.,

2013) under the same conditions for all methods, i.e. under the three

prediction settings (SP, SD and ST) and over five trials of 10-fold CV

based on Yamanishi_08 and DrugBank_FDA datasets.

We show that DDR, using 5-repeats of 10-fold CV, achieves higher

AUPR values compared with the other methods (Fig. 2). In terms of

AUPR, over the five different datasets, DDR, DNILMF, NRLMF,

KRONRLS-MKL, COSINE and BLM-NII achieved weighted average

of AUPR score under the three different prediction tasks settings as (SP:

71%, SD: 53%, ST: 52%), (SP: 56%, SD: 26%, ST: 37%), (SP: 50%,

SD: 29%, ST: 39%), (SP: 52%, SD: 20%, ST: 17%), (SD: 32%) and (SP:

35%, SD: 14%, ST: 25%), respectively. The weighted average of

AUPR is calculated for each of the three settings as

P5
i¼1

AUPRi � NSi

TS

where 5 is the number of datasets used in this study, TS is the total

number of samples in all datasets and NSi is the number of samples

in i-th dataset.

It should be noted that the COSINE method is specifically tailored

for the SD setting to find target proteins of new drugs with little to no

available interaction data; thus, only its results for the SD setting are

shown. Also, we show that DDR, using 5-repeats of 10-fold CV,

achieves higher AUC values compared to the other methods under three

prediction tasks and over the five different datasets (Supplementary

Table S2). Thus, in terms of AUC, over the five different datasets,

DDR, DNILMF, NRLMF, KRONRLS-MKL, COSINE and BLM-NII

achieved weighted average of AUC score under the three different pre-

diction tasks settings as (SP: 96%, SD: 90%, ST: 89%), (SP: 95%, SD:

87%, ST: 85%), (SP: 94%, SD: 85%, ST: 84%), (SP: 89%, SD: 77%, ST:

83%), (SD: 86%) and (SP: 91%, SD: 73%, ST: 80%), respectively.

To show more clearly the accuracy improvement by DDR, we

define the AUPR score error E as

E ¼ 1� AUPR

while the relative reduction of the AUPR score error of method 1 rel-

ative to method 2 we defined as

DE ¼ ðE2 � E1Þ=E2;

Fig. 2. Comparison results (in terms of AUPR scores) of DDR with the five

state of the art methods (DNILMF, NRLMF, KRONRLS-MKL, COSINE and

BLM-NII) using 5-repeats of 10-fold CV. Results are obtained under three pre-

diction tasks (SP, SD and ST) over all datasets (NR, GPCR, IC, E and

DrugBank_FDA) used in this study. The results for DNILMF, NRLMF,

KRONRLS-MKL, COSINE and BLM-NII are obtained using the best parameters

reported in the respective publications
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where E1 and E2 are determined for method 1 and method 2, respec-

tively. Based on individual AUPR values reported from 5-repeats of

10-fold CV experiments, we also calculated the relative reduction of

the AUPR error obtained by DDR relative to the next best method

across all different testing settings for each dataset. When predicting

unknown DTI pairs, as in the SP setting, DDR significantly reduces

AUPR error relative to the next best method by 39%, 30%, 38%,

27% and 33% for NR, GPCR, IC, E and DrugBank_FDA datasets,

respectively. For predicting DTIs for new drugs (SD setting), DDR

significantly reduces AUPR error relative to the next best method by

36%, 38%, 51%, 58% and 20%, for NR, GPCR, IC, E and

DrugBank_FDA datasets, respectively. Finally, for predicting new

target proteins (ST setting), DDR significantly reduces AUPR error

relative to the next best method by 25%, 11%, 49%, 25% and

21%, for NR, GPCR, IC, E and DrugBank_FDA dataset, respec-

tively. As a result, we demonstrate that DDR, reported from 5-

repeats of 10-fold CV experiments, achieves significantly more accu-

rate results than the other methods by achieving higher rank

(Supplementary Table S3) on different datasets and in all three set-

tings. We also demonstrated that DDR performs significantly better

than the other existing methods when known DTIs are missing in

the training data. This shows practical assessments of the predictive

power of DDR for real scenarios of DTI prediction, as in finding tar-

get proteins for new drugs (SD setting) with no available information

about interactions and predicting drugs for new target proteins (ST

setting) (Supplementary Table S3).

Moreover, we demonstrated that on weighted average over five

datasets, reported from 5-repeats of 10-fold CV experiments, DDR

reduces the AUPR score error relative to the next best method by

34% for predicting DTIs as in setting (SP), by 31% for predicting

DTIs as in setting (SD) and by 23% for predicting DTIs as in setting

(ST). This demonstrates that DDR significantly reduces the AUPR

score error compared to the other start-of-the-art methods.

In general, based on our prediction results (Fig. 2), we observe

that the results with the prediction model built for each specific class

of target proteins (i.e. NR, GPCR, IC, E) are better than the results

obtained by building a general model for multiple different target

protein classes as in the case of DrugBank_FDA data. This is

because each class of target proteins (NR, IC, GPCR, E) has its com-

mon characteristics that make them different from other classes.

Thus, it is reasonable to expect that the well-designed and trained

DTI predictor will capture some of these characteristics. In this way,

the DTI prediction models will also be more specific and tuned to

the target protein class for which they were developed and less tuned

for the other target protein classes. Our results obtained for predict-

ing DTIs using DrugBank_FDA data confirmed that even in this

case DDR significantly outperformed all other state-of-the-art meth-

ods used in the comparison.

We also performed test on hold-out data using DrugBank_FDA

dataset. These tests show that DDR achieves higher AUPR and AUC

values compared with the other methods under the three prediction

settings (Supplementary Table S4). We demonstrate that based on

AUPR values, reported from hold-out tests, the reduction of the

AUPR error for DDR relative to the next best method across all dif-

ferent testing settings for DrugBank_FDA dataset are 44% in the SP

setting, 21% in the SD setting and 29% in the ST setting.

4.2 Effect of similarity measures on the DDR

performance
Similarity between drugs or target proteins plays the most crucial

role when trying to predict DTIs for new drugs or new target

proteins. Different similarity measures describe data instances differ-

ently. Several studies have highlighted the importance of selecting

the proper similarity and integrating several similarity types to cap-

ture complementary information from several sources (Hao et al.,

2017; Nascimento et al., 2016). The proof is the improved accuracy

of DTI predictions over single adopted similarity (one for target pro-

teins, one for drugs), and this is why the combining multiple types of

similarities is important. We demonstrated that a suitable combina-

tion of few similarity measures results in higher accuracy of DTI pre-

dictions than when many or all similarity measures are used. Thus,

the improvements DDR provide compared to the current combina-

tion strategies are that: (i) it applies non-linear similarity fusion

method to combine different similarities, (ii) it can handle any num-

ber of provided similarities and (iii) it provides a systematic frame-

work to select the most relevant non-redundant similarities. In

addition, combining multiple similarity measures into one combined

similarity reduces the time complexity and data dimensionality

needed by the DDR method compared to the case of building a clas-

sification model with multiple features, where each feature is based

on scoring a path from a drug to a target protein through each single

similarity measure between drugs and each single similarity measure

between target proteins.

Thus, our aim is to combine multiple similarity measures into

one final composite similarity that captures the necessary informa-

tion from different similarities between drugs as well as from differ-

ent similarities between target proteins. Regarding this, we show

that DDR achieves higher AUPR values compared to the other meth-

ods (Fig. 2). We also compared the DDR performance when com-

bining all similarity measures we used in this study, with the case of

combining only the similarity measures we selected in a heuristic

process. We observed that the performance of DDR when combin-

ing only selected similarities is better than when combining all simi-

larities (Supplementary Table S5).

When we examined the selected similarities over the four data-

sets in Yamanishi_08, we observed that DDR consistently selects a

similar set of similarity measures for drugs and for target proteins

(Supplementary Table S6). For the selected similarity of drugs, we

observe that the selected similarities are related to network interac-

tion profiles and drug side-effects. It has been highlighted before

that the side-effect-based similarity improves the prediction of DTIs,

where the assumption is that drugs with similar target protein bind-

ing profiles tend to cause similar side-effects, implying a direct corre-

lation between target protein binding and side-effect similarity

(Campillos et al., 2008; Vilar and Hripcsak, 2016). It has also been

shown that the interaction profiling is an effective tool that can be

used for accurate prediction of DTIs (van Laarhoven et al., 2011);

the assumption is that two drugs that interact in a similar way with

the target proteins in a known DTI network, will also interact in a

similar way with new target proteins. For selected similarities of tar-

get proteins, we observe that these similarities are constructed based

on a specific characteristic of amino acids sequence and closeness in

PPI network that have been highlighted before in different bench-

marking studies of target protein descriptors to result in a good per-

formance for DTI prediction (Cao, 2015; Deng et al., 2002;

Nascimento et al., 2016).

For the DrugBank_FDA dataset (Supplementary Table S6), DDR

selected a set of similarity measures for drugs and for target proteins,

separately. We note that the information included in different data

sources used to calculate the similarity measures between drugs

and between target proteins have highly influenced the prediction

performance for drugs interacting with multi-class target proteins

(i.e. NR, GPCR, etc.). For similarity measures of drugs and target
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proteins that have been selected in the sequential heuristic process,

we observe that these similarities are related to network interaction

profiles (van Laarhoven et al., 2011) and other genome-wide global

characteristics of drugs and of target proteins such as drug-diseases

profiles and drug-pathways profiles between drugs, drug-induced

gene expression profiles of drugs, profiles of drug ATC-codes associ-

ations, profiles of GO terms of target proteins and profiles of path-

ways of target proteins. Using such types of similarities in DTI

prediction in numerous studies proved to be effective in describing

each drug and target protein in different datasets (Chen et al.,

2012a,b; Dudley et al., 2011; Dunkel et al., 2008; Ehsani and

Drablos, 2016; Iwata et al., 2017; Pan et al., 2014; Rodriguez-

Esteban, 2016; Smith et al., 2012; van Laarhoven et al., 2011; Vilar

and Hripcsak, 2016).

4.3 Prediction and validation of novel (unknown) DTIs
To evaluate the utility of DDR, we used it to predict novel DTIs (i.e.

those that are not known to be true DTIs) in each of the five data-

sets, separately. For prediction of novel interactions, we build the

predictive model for each dataset used in this study, in which the

model is trained using all known interactions (positive labels) in all

data folds of CV, and the negative labels are split into train and test

sets as in a CV setup. As a result, all unknown DTI (negative labels)

are predicted and the top 5 ranked interactions for each dataset are

validated. To verify these novel predictions, we considered several

reference databases that contain information obtained from curated/

experimental/published results on small molecule–protein interac-

tions. Thus, we searched DrugBank (Wishart et al., 2008), KEGG

(Kanehisa et al., 2006), ChEMBL (Gaulton et al., 2012), Matador

(Gunther et al., 2008), CTD (Davis et al., 2017), T3DB (Wishart

et al., 2015) and the biomedical literature to find supporting

evidences.

In summary, we evaluated the accuracy of 25 novel DTIs pre-

dicted by our method using four datasets of Yamanashi_08 and

DrugBank_FDA dataset and confirmed 22 of these novel DTIs as

supported by other existing evidence (Table 2).

Furthermore, to demonstrate that the predictions by DDR are

not random, we additionally performed the label permutation tests

to ensure that the top 5 DTI predictions by DDR in each dataset are

Table 2. Top ranked 25 novel DTIs predicted by DDR

Drug ID Drug name Taregt protein ID Target protein name Validation source Evidence

Dataset: NR

D00348 Isotretinoin hsa6256 RXRA CTD CTD: D015474, CTD: 6256

D00585 Mifepristone hsa2099 ESR1 C and PMID C:

1166117, C: 206,

C: 1276308, PMID: 20046055

D00962 Clomiphene citrate hsa5241 PGR CTD CTD: D002996, CTD: 5241

D00182 Norethindrone hsa2099 ESR1 T3DB and PMID T3DB: T3D4745,

PMID: 23611293

D00951 Medroxyprogesterone acetate hsa2099 ESR1 DB DB: DB00603

Dataset: GPCR

D00049 Niacin hsa8843 HCAR3 DB DB: DB00627

D02910 Amiodarone hsa154 ADRB2 CTD CTD: D000638, CTD: 154

D02340 Loxapine hsa1812 DRD1 DB DB: DB00408

D00726 Metoclopramide hsa1129 CHRM2 M M: PC4168

D00674 Naratriptan hydrochloride hsa3351 HTR1B DB DB: DB00952

Dataset: IC

D02356 Verapamil hsa6833 ABCC8 PMID PMID: 21098040

D03365 Nicotine hsa1137 CHRNA4 DB DB: DB00184

D00538 Zonisamide hsa6331 SCN5A DB DB: DB00909

D02098 Proparacaine hydrochloride hsa8645 KCNK5 None None

D00775 Riluzole hsa2898 GRIK2 None None

Dataset: E

D00139 Methoxsalen hsa1543 CYP1A1 DB and PMID DB: DB00553

PMID: 15670584

D00437 Nifedipine hsa1559 CYP2C9 DB DB: DB01115

D00410 Metyrapone hsa1583 CYP11A1 CTD CTD: D008797, CTD: 1583

D00574 Aminoglutethimide hsa1589 CYP21A2 M M: PC2145

D00542 Halothane hsa1571 CYP2E1 M M: PC3562

Dataset: DrugBank_FDA

DB01589 Quazepam P47870 GABRB2 K K: D00457

DB00825 Menthol P35372 OPRM1 None None

DB00147 Pyridoxal P04798 CYP1A1 PMID PMID: 19637937

DB01544 Flunitrazepam P14867 GABRA1 CTD and K CTD: D005445, K: D01230

DB02546 Vorinostat P56524 HDAC4 CTD and C CTD: C111237, CTD: 9759

C: 98,

C: 3524

Note: Most of the top novel interactions (highest prediction score) are confirmed as supported by other existing evidences (public databases or literature) where

the following annotation is used to demarcate the source of confirmatory information.

C, ChEMBL; CTD, Comparative Toxicogenomics Database; DB, DrugBank; M, MATADOR; K, KEGG; PMID, PubMed; PC, PubChem Compound.
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not predicted by chance. To do so, we performed the following: we

randomly shuffled the network labels (known and unknown) 100

times to produce different 100 random networks. Then, we per-

formed SP DTI prediction setup on each network. For each dataset

and for each novel DTI in the top 5 DTIs based on that dataset, we

calculated P-value as the percentage of a given novel DTI being

ranked in the top 5 DTIs in the 100 random networks. We demon-

strated that all predicted novel DTIs have significant P-values <0.05

(Supplementary Table S7). Thus, in addition to having DDR novel

DTI prediction validated based on other sources, results from the

label permutation tests also confirm the reliability of DDR novel

DTI predictions.

5 Discussion

This study introduces a novel DTI prediction method, DDR, which

utilizes a heterogeneous drug–target graph that contains information

about various similarities between drugs and similarities between

proteins as drug targets. On different representative datasets, under

various test setups, and using AUPR and AUC as the performance

measures, we show that DDR clearly outperforms the other state-of-

the-art methods we used in the comparison. For these we used CV

and hold-out tests. DDR achieves notably higher AUPR values com-

pared to other methods, thus significantly reducing the AUPR score

error relative to the next best method.

Moreover, on different datasets and in all three task settings we

demonstrate that DDR produces significantly more accurate results

than the other methods by achieving higher rank, based on AUPR

values. We also demonstrated that DDR performs significantly bet-

ter than the other existing methods when known DTIs are missing in

the training data. This shows practical assessments of the predictive

power of DDR for real scenarios of DTI prediction, as in finding tar-

get proteins for new drugs (SD setting) with no available information

about interactions and predicting drugs for target proteins that are

new (ST setting).

When we compared DDR performance in case of combining all

similarity measures we used in this study with the case of combining

only the similarity measures we selected through our heuristic

method, we observed that the performance of DDR with selected

similarities is better than when combining all similarities.

We observed that the best second method in predicting DTI as in

SP setting, based on the weighted average of AUPR results over the

five different datasets is the DNILMF method. This is due to the

method followed by DNILMF in employing the nonlinear combina-

tion technique of multiple similarity measures for drugs and for tar-

get proteins, as well as smoothing the predictions of new drugs and

new target proteins by incorporating neighbor information based on

the assumption that similar drugs (or target proteins) may contribute

to the accuracy of the predictions for their neighbors. On the other

hand, in predicting DTIs, we observed that the second best method,

based on the weighted average of AUPR results over the five differ-

ent datasets in the ST and SD setting, are the NRLMF and COSINE,

respectively.

As the current implementation of DDR handles only binary

DTI data with the goal of classifying a given DTI as binding (label-

¼1) or non-binding (label¼0), in future, we plan to extend

the functionality of DDR to handle continuous DTI data (i.e.

continuous values of binding affinities of drugs and target proteins,

He et al., 2017).

6 Conclusion

We presented our method (DDR) that is based on the use of a heter-

ogeneous graph containing information about known DTIs, as well

as similarities between drugs and similarities between target proteins

obtained from different data sources. DDR utilizes graph mining

and machine learning techniques. It is capable of utilizing different

similarity measures between drugs, as well as between target pro-

teins. DDR applied non-linear similarity fusion method to combine

different similarities for drugs and target proteins. Before applying

the combined similarity method, DDR performed a pre-processing

step where a subset of similarity types is selected in a heuristic proc-

ess. This is done to select the best combination of similarities for the

tasks in question since using all similarity types introduces noise.

We demonstrated that DDR achieves significantly more accurate

results than the other state-of-the-art methods under different pre-

diction tasks settings and using different datasets and different meth-

ods of performance evaluation. Finally, we evaluated the accuracy

of 25 novel DTIs predicted by our method and confirmed 22 of these

novel DTIs as supported by other existing evidences. Thus, DDR

proved its practical utility by validating predictions of novel DTIs

over different datasets, suggesting that DDR can be used as an effi-

cient method to identify correct DTIs.
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