134 research outputs found

    4G Technology Features and Evolution towards IMT-Advanced

    Get PDF
    Kiinteiden- ja mobiilipalveluiden kysyntä kasvaa nopeasti ympäri maailmaa. Älykkäiden päätelaitteiden, kuten iPhone:n ja Nokia N900:n markkinoilletulo yhdistettynä näiden korkeaan markkinapenetraatioon ja korkealuokkaiseen käyttäjäkokemukseen lisäävät entisestään palveluiden kysyntää ja luovat tarpeen jatkuvalle innovoinnille langattomien teknologioiden alalla tavoitteena lisäkapasiteetin ja paremman palvelunlaadun tarjoaminen. Termi 4G (4th Generation) viittaa tuleviin neljännen sukupolven mobiileihin langattomiin palveluihin, jotka International Telecommunications Union:in Radiocommunication Sector (ITU-R) on määritellyt ja nimennyt International Mobile Telecommunications-Advanced (IMT-Advanced). Nämä ovat järjestelmiä, jotka pitävät sisällään IMT:n ne uudet ominaisuudet, jotka ylittävät IMT-2000:n vaatimukset. Long Term Evolution-Advanced (LTE-Advanced) ja IEEE 802.16m ovat IMT-A sertifiointiin lähetetyt kaksi pääasiallista kandidaattiteknologiaa. Tässä diplomityössä esitellään kolmannen sukupolven järjestelmien kehityspolku LTE:hen ja IEEE 802.16e-2005 asti. Lisäksi työssä esitetään LTE-Advanced:n ja IEEE 802.16m:n uudet vaatimukset ja ominaisuudet sekä vertaillaan näiden lähestymistapoja IMT-A vaatimusten täyttämiseksi. Lopuksi työssä luodaan katsaus LTE ja IEEE 802.16e-2005 (markkinointinimeltään Mobile WiMAX) -järjestelmien markkinatilanteeseen.The demand for affordable bandwidth in fixed and mobile services is growing rapidly around the world. The emergence of smart devices like the iPhone and Nokia N900, coupled with their high market penetration and superior user experience is behind this increased demand, inevitably driving the need for continued innovations in the wireless data technologies industry to provide more capacity and higher quality of service. The term "4G" meaning the 4th Generation of wireless technology describes mobile wireless services which have been defined by the ITU's Radiocommunication Sector (ITU-R) and titled International Mobile Telecommunications-Advanced (IMT-Advanced). These are mobile systems that include the new capabilities of IMT that go beyond those of IMT-2000. Long Term Evolution-Advanced (LTE-Advanced) and IEEE 802.16m are the two main candidate technologies submitted for IMT-Advanced certification. This thesis reviews the technology roadmap up to and including current 3G systems LTE from the 3rd Generation Partnership Project (3GPP) and IEEE 802.16e-2005 from the Institute of Electrical and Electronics Engineers (IEEE). Furthermore, new requirements and features for LTE-Advanced and IEEE 802.16m as well as a comparative approach towards IMT-Advanced certification are presented. Finally, the thesis concludes with a discussion on the market status and deployment strategies of LTE and IEEE 802.16e-2005, or Mobile WiMAX as it is being marketed

    Aumento de capacidade em sistemas MIMO coordenados para advanced LTE com utilização de repetidores fixos

    Get PDF
    Com vista a revolucionar o sector das comunicações móveis, muito à custa dos elevados débitos prometidos, a tecnologia LTE recorre a uma técnica que se prevê que seja bastante utilizada nas futuras redes de comunicações móveis: Relaying. Juntamente com esta técnica, o LTE recorre à técnica MIMO, para melhorar a qualidade da transmissão em ambientes hostis e oferecer elevados ritmos de transmissão. No planeamento das próximas redes LTE, o recurso à técnica Relaying é frequente. Esta técnica, tem como objectivo aumentar a cobertura e/ou capacidade da rede, e ainda melhorar o seu desempenho em condições de fronteira de célula. A performance de uma RS depende da sua localização, das condições de propagação do canal rádio a que tanto a RS como o EU estão sujeitos, e ainda da capacidade que a RS tem de receber, processar e reencaminhar a informação. O objectivo da tese é estudar a relação existente entre o posicionamento de uma RS e o seu desempenho. Desta forma, pretende-se concluir qual a posição ideal de uma RS (tanto do tipo AF como SDF). Para além deste estudo, é apresentado um comparativo do desempenho dos modos MIMO TD e OL-SM, onde se conclui em que condições deverão ser utilizados, numa rede LTE equipada com FRSs.With the aim of providing high data rates, the Long Term Evolution (LTE) standard makesuse of relaying as one of the important techniques for new mobile networks. LTE will alsomake use of the Multiple-Input Multiple-Output (MIMO) technique, to improve the transmission’s quality in hostile environments and to offer very high data rates. The relay solution in mobile networks planning is a highly used technique in next LTEnetworks. This technique has the aim of increasing the network coverage and/or capacityand improves the cell edge throughput. The Relay Station (RS) performance depends on itsposition in the cell, the radio conditions to which the RS and the User Equipment (UE) are subjected, and the RS capability to receive process and forward the information. The aim of this thesis is to conclude about the optimized position in which a RS (fromtypes Amplify and Forward (AF)/ Selective Decode and Forward (SDF)) should be placed,with the aim of maximizing the UE throughput. Furthermore, to compare the performanceof Transmit Diversity (TD) versus Open-Loop Spatial Multiplexing (OL-SM) MIMO in LTE,and under which conditions they should be used, in a network equipped with Fixed RelayStations (FRSs)

    Long Term Evolution-Advanced and Future Machine-to-Machine Communication

    Get PDF
    Long Term Evolution (LTE) has adopted Orthogonal Frequency Division Multiple Access (OFDMA) and Single Carrier Frequency Division Multiple Access (SC-FDMA) as the downlink and uplink transmission schemes respectively. Quality of Service (QoS) provisioning is one of the primary objectives of wireless network operators. In LTE-Advanced (LTE-A), several additional new features such as Carrier Aggregation (CA) and Relay Nodes (RNs) have been introduced by the 3rd Generation Partnership Project (3GPP). These features have been designed to deal with the ever increasing demands for higher data rates and spectral efficiency. The RN is a low power and low cost device designed for extending the coverage and enhancing spectral efficiency, especially at the cell edge. Wireless networks are facing a new challenge emerging on the horizon, the expected surge of the Machine-to-Machine (M2M) traffic in cellular and mobile networks. The costs and sizes of the M2M devices with integrated sensors, network interfaces and enhanced power capabilities have decreased significantly in recent years. Therefore, it is anticipated that M2M devices might outnumber conventional mobile devices in the near future. 3GPP standards like LTE-A have primarily been developed for broadband data services with mobility support. However, M2M applications are mostly based on narrowband traffic. These standards may not achieve overall spectrum and cost efficiency if they are utilized for serving the M2M applications. The main goal of this thesis is to take the advantage of the low cost, low power and small size of RNs for integrating M2M traffic into LTE-A networks. A new RN design is presented for aggregating and multiplexing M2M traffic at the RN before transmission over the air interface (Un interface) to the base station called eNodeB. The data packets of the M2M devices are sent to the RN over the Uu interface. Packets from different devices are aggregated at the Packet Data Convergence Protocol (PDCP) layer of the Donor eNodeB (DeNB) into a single large IP packet instead of several small IP packets. Therefore, the amount of overhead data can be significantly reduced. The proposed concept has been developed in the LTE-A network simulator to illustrate the benefits and advantages of the M2M traffic aggregation and multiplexing at the RN. The potential gains of RNs such as coverage enhancement, multiplexing gain, end-to-end delay performance etc. are illustrated with help of simulation results. The results indicate that the proposed concept improves the performance of the LTE-A network with M2M traffic. The adverse impact of M2M traffic on regular LTE-A traffic such as voice and file transfer is minimized. Furthermore, the cell edge throughput and QoS performance are enhanced. Moreover, the results are validated with the help of an analytical model

    Evaluation of 3GPP Technology Candidate Towards Fourth Generation Mobile

    Full text link
    [ES] LTE-Advanced es una de las tecnologías candidatas para convertirse en la próxima generación de comunicaciones móviles (4G). Es responsabilidad de la Unión Internacional de las Telecomunicaciones (UIT) evaluar esta tecnología a través de los Grupos de Evaluación Externos (GEE), entre los cuales se encuentra el consorcio WINNER+ (Wireless World Initiative New Radio +). El Grupo de Comunicaciones Móviles (GCM) del Instituto de Telecomunicaciones y Aplicaciones Multimedia, como socio de WINNER+, está analizando diferentes técnicas para optimizar la red de acceso radio LTEAdvanced. Esta tesina de máster se enmarca dentro de este trabajo, y especialmente, en la comparación de los turbo-códigos (TC) y Low Density Partity Check (LDPC) para anchos de banda de hasta 100 MHz. Los resultados obtenidos muestran que tanto los TC como los LDPC son buenos codificadores para esos tamaños de bloque. Los códigos LDPC representan una mejora de 0.5 dB como máximo respecto a los TC. Además, se ha realizado un estudio de prestaciones de la capa física de LTE en el enlace ascendente y descendente, junto con una propuesta de calibración de este tipo de simulaciones de enlace.[EN] LTE-Advanced is one promising candidate technology to become part of the next generation mobile (4G). It is up to the International Telecommunication Union (ITU) standardization body to assess this technology through the External Evaluation Groups (EEG), being one of them the WINNER+ project (Wireless World Initiative New Radio +). The Mobile Communications Group (MCG) of the Institute of Telecommunications and Multimedia Applications, as a partner of WINNER+, is currently analyzing and proposing different techniques with the aim of optimizing the LTE-Advanced radio access network. This Master Thesis is part of this activity and, especially, on the comparison of Turbo (TC) and Low Density Parity Check (LDPC) codes for bandwidths up to 100 MHz. Results prove that both TC and LDPC codes are good encoders for those block sizes. The LDPC codes only entail a maximum 0.5 dB improvement as compared with TC. In addition to this assessment, a performance study of LTE downlink/uplink (DL/ UL) physical layer together with a calibration proposal for link level simulations has been carried out.Cabrejas Peñuelas, J. (2009). Evaluation of 3GPP Technology Candidate Towards Fourth Generation Mobile. http://hdl.handle.net/10251/27347.Archivo delegad

    Towards reliable communication in LTE-A connected heterogeneous machine to machine network

    Get PDF
    Machine to machine (M2M) communication is an emerging technology that enables heterogeneous devices to communicate with each other without human intervention and thus forming so-called Internet of Things (IoTs). Wireless cellular networks (WCNs) play a significant role in the successful deployment of M2M communication. Specially the ongoing massive deployment of long term evolution advanced (LTE-A) makes it possible to establish machine type communication (MTC) in most urban and remote areas, and by using LTE-A backhaul network, a seamless network communication is being established between MTC-devices and-applications. However, the extensive network coverage does not ensure a successful implementation of M2M communication in the LTE-A, and therefore there are still some challenges. Energy efficient reliable transmission is perhaps the most compelling demand for various M2M applications. Among the factors affecting reliability of M2M communication are the high endto-end delay and high bit error rate. The objective of the thesis is to provide reliable M2M communication in LTE-A network. In this aim, to alleviate the signalling congestion on air interface and efficient data aggregation we consider a cluster based architecture where the MTC devices are grouped into number of clusters and traffics are forwarded through some special nodes called cluster heads (CHs) to the base station (BS) using single or multi-hop transmissions. In many deployment scenarios, some machines are allowed to move and change their location in the deployment area with very low mobility. In practice, the performance of data transmission often degrades with the increase of distance between neighboring CHs. CH needs to be reselected in such cases. However, frequent re-selection of CHs results in counter effect on routing and reconfiguration of resource allocation associated with CH-dependent protocols. In addition, the link quality between a CH-CH and CH-BS are very often affected by various dynamic environmental factors such as heat and humidity, obstacles and RF interferences. Since CH aggregates the traffic from all cluster members, failure of the CH means that the full cluster will fail. Many solutions have been proposed to combat with error prone wireless channel such as automatic repeat request (ARQ) and multipath routing. Though the above mentioned techniques improve the communication reliability but intervene the communication efficiency. In the former scheme, the transmitter retransmits the whole packet even though the part of the packet has been received correctly and in the later one, the receiver may receive the same information from multiple paths; thus both techniques are bandwidth and energy inefficient. In addition, with retransmission, overall end to end delay may exceed the maximum allowable delay budget. Based on the aforementioned observations, we identify CH-to-CH channel is one of the bottlenecks to provide reliable communication in cluster based multihop M2M network and present a full solution to support fountain coded cooperative communications. Our solution covers many aspects from relay selection to cooperative formation to meet the user’s QoS requirements. In the first part of the thesis, we first design a rateless-coded-incremental-relay selection (RCIRS) algorithm based on greedy techniques to guarantee the required data rate with a minimum cost. After that, we develop fountain coded cooperative communication protocols to facilitate the data transmission between two neighbor CHs. In the second part, we propose joint network and fountain coding schemes for reliable communication. Through coupling channel coding and network coding simultaneously in the physical layer, joint network and fountain coding schemes efficiently exploit the redundancy of both codes and effectively combat the detrimental effect of fading conditions in wireless channels. In the proposed scheme, after correctly decoding the information from different sources, a relay node applies network and fountain coding on the received signals and then transmits to the destination in a single transmission. Therefore, the proposed schemes exploit the diversity and coding gain to improve the system performance. In the third part, we focus on the reliable uplink transmission between CHs and BS where CHs transmit to BS directly or with the help of the LTE-A relay nodes (RN). We investigate both type-I and type-II enhanced LTE-A networks and propose a set of joint network and fountain coding schemes to enhance the link robustness. Finally, the proposed solutions are evaluated through extensive numerical simulations and the numerical results are presented to provide a comparison with the related works found in the literature

    Performance Evaluation of LTE and LTE advanced standards for next generation mobile networks

    Get PDF
    Nel corso della trattazione sono analizzati gli standard 3GPP LTE e LTE-Advanced per la prossima generazione delle reti mobili cellulari. L'algoritmo OptiMOS, che può essere impiegato dalla Stazione Base per servire in modo efficiente connessioni VoIP, è descritto nel capitolo [8]. L’algoritmo di link scheduling Relay, finalizzato a ottimizzare le reti LTE avanzate in presenza di nodi relay è descritto nel capitolo [9]. Questo lavoro è stato presentato in adempimento parziale dei requisiti per la Laurea di Dottore di Ricerca in Ingegneria dell'Informazione presso l'ufficio informazioni Dipartimento di Ingegneria dell'Università degli Studi di Pisa, Italia

    D6.3 Intermediate system evaluation results

    Full text link
    The overall purpose of METIS is to develop a 5G system concept that fulfil s the requirements of the beyond-2020 connected information society and to extend today’s wireless communication systems for new usage cases. First, in this deliverable an updated view on the overall METIS 5G system concept is presented. Thereafter, simulation results for the most promising technology components supporting the METIS 5G system concept are reported. Finally, s imulation results are presented for one relevant aspect of each Horizontal Topic: Direct Device - to - Device Communication, Massive Machine Communication, Moving Networks, Ultra - Dense Networks, and Ultra - Reliable Communication.Popovski, P.; Mange, G.; Fertl, P.; Gozálvez - Serrano, D.; Droste, H.; Bayer, N.; Roos, A.... (2014). D6.3 Intermediate system evaluation results. http://hdl.handle.net/10251/7676
    corecore