722 research outputs found

    Combining coded signals with arbitrary modulations in orthogonal relay channels

    Get PDF
    We consider a relay channel for which the following assumptions are made. (1) The source-destination and relay-destination channels are orthogonal (frequency division relay channel). (2) The relay implements the decode-and-forward protocol. (3) The source and relay implement the same channel encoder, namely, a onvolutional encoder. (4) They can use arbitrary and possibly different modulations. In this framework, we derive the best combiner in the sense of the maximum likelihood (ML) at the destination and the branch metrics of the trellis associated with its channel decoder for the ML combiner and also for the maximum ratio combiner (MRC), cooperative-MRC (C-MRC), and the minimum mean-square error (MMSE) combiner

    Symbol error rate analysis for M-QAM modulated physical-layer network coding with phase errors

    No full text
    Recent theoretical studies of physical-layer network coding (PNC) show much interest on high-level modulation, such as M-ary quadrature amplitude modulation (M-QAM), and most related works are based on the assumption of phase synchrony. The possible presence of synchronization error and channel estimation error highlight the demand of analyzing the symbol error rate (SER) performance of PNC under different phase errors. Assuming synchronization and a general constellation mapping method, which maps the superposed signal into a set of M coded symbols, in this paper, we analytically derive the SER for M-QAM modulated PNC under different phase errors. We obtain an approximation of SER for general M-QAM modulations, as well as exact SER for quadrature phase-shift keying (QPSK), i.e. 4-QAM. Afterwards, theoretical results are verified by Monte Carlo simulations. The results in this paper can be used as benchmarks for designing practical systems supporting PNC. © 2012 IEEE

    Gaussian Broadcast Channels with an Orthogonal and Bidirectional Cooperation Link

    Full text link
    This paper considers a system where one transmitter broadcasts a single common message to two receivers linked by a bidirectional cooperation channel, which is assumed to be orthogonal to the downlink channel. Assuming a simplified setup where, in particular, scalar relaying protocols are used and channel coding is not exploited, we want to provide elements of response to several questions of practical interest. Here are the main underlying issues: 1. The way of recombining the signals at the receivers; 2. The optimal number of cooperation rounds; 3. The way of cooperating (symmetrically or asymmetrically; which receiver should start cooperating in the latter case); 4. The influence of spectral resources. These issues are considered by studying the performance of the assumed system through analytical results when they are derivable and through simulation results. For the particular choices we made, the results sometimes do not coincide with those available for the discrete counterpart of the studied channel

    Gaussian Broadcast Channels with an Orthogonal and Bidirectional Cooperation Link

    No full text
    International audienceThis paper considers a system where one transmitter broadcasts a single common message to two receivers linked by a bidirectional cooperation channel, which is assumed to be orthogonal to the downlink channel. Assuming a simplified setup where, in particular, scalar relaying protocols are used and channel coding is not exploited, we want to provide elements of response to several questions of practical interest. Here are the main underlying issues: (1) the way of recombining the signals at the receivers; (2) the optimal number of cooperation rounds; (3) the way of cooperating (symmetrically or asymmetrically, which receiver should start cooperating in the latter case); and (4) the influence of spectral resources. These issues are considered by studying the performance of the assumed system through analytical results when they are derivable and through simulation results. For the particular choices we made, the results sometimes do not coincide with those available for the discrete counterpart of the studied channel

    A Comparative Study of Relaying Schemes with Decode-and-Forward over Nakagami-m Fading Channels

    Full text link
    Utilizing relaying techniques to improve performance of wireless systems is a promising avenue. However, it is crucial to understand what type of relaying schemes should be used for achieving different performance objectives under realistic fading conditions. In this paper, we present a general framework for modelling and evaluating the performance of relaying schemes based on the decode-and-forward (DF) protocol over independent and not necessarily identically distributed (INID) Nakagami-m fading channels. In particular, we present closed-form expressions for the statistics of the instantaneous output signal-to-noise ratio of four significant relaying schemes with DF; two based on repetitive transmission and the other two based on relay selection (RS). These expressions are then used to obtain closed-form expressions for the outage probability and the average symbol error probability for several modulations of all considered relaying schemes over INID Nakagami-m fading. Importantly, it is shown that when the channel state information for RS is perfect, RS-based transmission schemes always outperform repetitive ones. Furthermore, when the direct link between the source and the destination nodes is sufficiently strong, relaying may not result in any gains and in this case it should be switched-off.Comment: Submitted to Journal of Computer Systems, Networks, and Communication
    corecore