80,529 research outputs found

    Flexibly Instructable Agents

    Full text link
    This paper presents an approach to learning from situated, interactive tutorial instruction within an ongoing agent. Tutorial instruction is a flexible (and thus powerful) paradigm for teaching tasks because it allows an instructor to communicate whatever types of knowledge an agent might need in whatever situations might arise. To support this flexibility, however, the agent must be able to learn multiple kinds of knowledge from a broad range of instructional interactions. Our approach, called situated explanation, achieves such learning through a combination of analytic and inductive techniques. It combines a form of explanation-based learning that is situated for each instruction with a full suite of contextually guided responses to incomplete explanations. The approach is implemented in an agent called Instructo-Soar that learns hierarchies of new tasks and other domain knowledge from interactive natural language instructions. Instructo-Soar meets three key requirements of flexible instructability that distinguish it from previous systems: (1) it can take known or unknown commands at any instruction point; (2) it can handle instructions that apply to either its current situation or to a hypothetical situation specified in language (as in, for instance, conditional instructions); and (3) it can learn, from instructions, each class of knowledge it uses to perform tasks.Comment: See http://www.jair.org/ for any accompanying file

    Number skills and knowledge in children with specific language impairment

    Get PDF
    The number skills of groups of 7 to 9 year old children with specific language impairment (SLI) attending mainstream or special schools are compared with an age and nonverbal reasoning matched group (AC), and a younger group matched on oral language comprehension. The SLI groups performed below the AC group on every skill. They also showed lower working memory functioning and had received lower levels of instruction. Nonverbal reasoning, working memory functioning, language comprehension, and instruction accounted for individual variation in number skills to differing extents depending on the skill. These factors did not explain the differences between SLI and AC groups on most skills

    Machine learning and its applications in reliability analysis systems

    Get PDF
    In this thesis, we are interested in exploring some aspects of Machine Learning (ML) and its application in the Reliability Analysis systems (RAs). We begin by investigating some ML paradigms and their- techniques, go on to discuss the possible applications of ML in improving RAs performance, and lastly give guidelines of the architecture of learning RAs. Our survey of ML covers both levels of Neural Network learning and Symbolic learning. In symbolic process learning, five types of learning and their applications are discussed: rote learning, learning from instruction, learning from analogy, learning from examples, and learning from observation and discovery. The Reliability Analysis systems (RAs) presented in this thesis are mainly designed for maintaining plant safety supported by two functions: risk analysis function, i.e., failure mode effect analysis (FMEA) ; and diagnosis function, i.e., real-time fault location (RTFL). Three approaches have been discussed in creating the RAs. According to the result of our survey, we suggest currently the best design of RAs is to embed model-based RAs, i.e., MORA (as software) in a neural network based computer system (as hardware). However, there are still some improvement which can be made through the applications of Machine Learning. By implanting the 'learning element', the MORA will become learning MORA (La MORA) system, a learning Reliability Analysis system with the power of automatic knowledge acquisition and inconsistency checking, and more. To conclude our thesis, we propose an architecture of La MORA

    Understanding and Affecting Student Reasoning About Sound Waves

    Get PDF
    Student learning of sound waves can be helped through the creation of group-learning classroom materials whose development and design rely on explicit investigations into student understanding. We describe reasoning in terms of sets of resources, i.e. grouped building blocks of thinking that are commonly used in many different settings. Students in our university physics classes often used sets of resources that were different from the ones we wish them to use. By designing curriculum materials that ask students to think about the physics from a different view, we bring about improvement in student understanding of sound waves. Our curriculum modifications are specific to our own classes, but our description of student learning is more generally useful for teachers. We describe how students can use multiple sets of resources in their thinking, and raise questions that should be considered by both instructors and researchers.Comment: 23 pages, 4 figures, 3 tables, 28 references, 7 notes. Accepted for publication in the International Journal of Science Educatio

    Analytic frameworks for assessing dialogic argumentation in online learning environments

    Get PDF
    Over the last decade, researchers have developed sophisticated online learning environments to support students engaging in argumentation. This review first considers the range of functionalities incorporated within these online environments. The review then presents five categories of analytic frameworks focusing on (1) formal argumentation structure, (2) normative quality, (3) nature and function of contributions within the dialog, (4) epistemic nature of reasoning, and (5) patterns and trajectories of participant interaction. Example analytic frameworks from each category are presented in detail rich enough to illustrate their nature and structure. This rich detail is intended to facilitate researchers’ identification of possible frameworks to draw upon in developing or adopting analytic methods for their own work. Each framework is applied to a shared segment of student dialog to facilitate this illustration and comparison process. Synthetic discussions of each category consider the frameworks in light of the underlying theoretical perspectives on argumentation, pedagogical goals, and online environmental structures. Ultimately the review underscores the diversity of perspectives represented in this research, the importance of clearly specifying theoretical and environmental commitments throughout the process of developing or adopting an analytic framework, and the role of analytic frameworks in the future development of online learning environments for argumentation

    Subtraction involving negative numbers: Connecting to whole number reasoning

    Get PDF
    In this article, we explore how students attempt to bridge from their whole number reasoning to integer reasoning as they solve subtraction problems involving negative numbers. Based on interviews with students ranging from first graders to preservice teachers, we identify two overarching strategies: making connections to known problem types and leveraging conceptions of subtraction. Their initial connections suggest that rather than identifying the best instructional models to teach integer concepts, we should focus on identifying integer instructional models that build on the potentially productive connections that students’ already make; we propose an example of one such form of instruction
    • …
    corecore