811 research outputs found

    A Survey on Knowledge Graphs: Representation, Acquisition and Applications

    Full text link
    Human knowledge provides a formal understanding of the world. Knowledge graphs that represent structural relations between entities have become an increasingly popular research direction towards cognition and human-level intelligence. In this survey, we provide a comprehensive review of knowledge graph covering overall research topics about 1) knowledge graph representation learning, 2) knowledge acquisition and completion, 3) temporal knowledge graph, and 4) knowledge-aware applications, and summarize recent breakthroughs and perspective directions to facilitate future research. We propose a full-view categorization and new taxonomies on these topics. Knowledge graph embedding is organized from four aspects of representation space, scoring function, encoding models, and auxiliary information. For knowledge acquisition, especially knowledge graph completion, embedding methods, path inference, and logical rule reasoning, are reviewed. We further explore several emerging topics, including meta relational learning, commonsense reasoning, and temporal knowledge graphs. To facilitate future research on knowledge graphs, we also provide a curated collection of datasets and open-source libraries on different tasks. In the end, we have a thorough outlook on several promising research directions

    The use of proof plans in tactic synthesis

    Get PDF
    We undertake a programme of tactic synthesis. We first formalize the notion of a tactic as a rewrite rule, then give a correctness criterion for this by means of a reflection mechanism in the constructive type theory OYSTER. We further formalize the notion of a tactic specification, given as a synthesis goal and a decidability goal. We use a proof planner. CIAM. to guide the search for inductive proofs of these, and are able to successfully synthesize several tactics in this fashion. This involves two extensions to existing methods: context-sensitive rewriting and higher-order wave rules. Further, we show that from a proof of the decidability goal one may compile to a Prolog program a pseudo- tactic which may be run to efficiently simulate the input/output behaviour of the synthetic tacti

    Planning for behaviour-based robotic assembly: a logical framework

    Get PDF

    Current and Future Challenges in Knowledge Representation and Reasoning

    Full text link
    Knowledge Representation and Reasoning is a central, longstanding, and active area of Artificial Intelligence. Over the years it has evolved significantly; more recently it has been challenged and complemented by research in areas such as machine learning and reasoning under uncertainty. In July 2022 a Dagstuhl Perspectives workshop was held on Knowledge Representation and Reasoning. The goal of the workshop was to describe the state of the art in the field, including its relation with other areas, its shortcomings and strengths, together with recommendations for future progress. We developed this manifesto based on the presentations, panels, working groups, and discussions that took place at the Dagstuhl Workshop. It is a declaration of our views on Knowledge Representation: its origins, goals, milestones, and current foci; its relation to other disciplines, especially to Artificial Intelligence; and on its challenges, along with key priorities for the next decade

    Investigation, Development, and Evaluation of Performance Proving for Fault-tolerant Computers

    Get PDF
    A number of methodologies for verifying systems and computer based tools that assist users in verifying their systems were developed. These tools were applied to verify in part the SIFT ultrareliable aircraft computer. Topics covered included: STP theorem prover; design verification of SIFT; high level language code verification; assembly language level verification; numerical algorithm verification; verification of flight control programs; and verification of hardware logic

    Completing the Is-a Structure in Description Logics Ontologies

    Full text link

    Ontology Reasoning with Deep Neural Networks

    Full text link
    The ability to conduct logical reasoning is a fundamental aspect of intelligent behavior, and thus an important problem along the way to human-level artificial intelligence. Traditionally, symbolic logic-based methods from the field of knowledge representation and reasoning have been used to equip agents with capabilities that resemble human logical reasoning qualities. More recently, however, there has been an increasing interest in using machine learning rather than symbolic logic-based formalisms to tackle these tasks. In this paper, we employ state-of-the-art methods for training deep neural networks to devise a novel model that is able to learn how to effectively perform logical reasoning in the form of basic ontology reasoning. This is an important and at the same time very natural logical reasoning task, which is why the presented approach is applicable to a plethora of important real-world problems. We present the outcomes of several experiments, which show that our model learned to perform precise ontology reasoning on diverse and challenging tasks. Furthermore, it turned out that the suggested approach suffers much less from different obstacles that prohibit logic-based symbolic reasoning, and, at the same time, is surprisingly plausible from a biological point of view
    • …
    corecore