1,810 research outputs found

    The Vega program

    Get PDF

    SIMULATION ANALYSIS OF USMC HIMARS EMPLOYMENT IN THE WESTERN PACIFIC

    Get PDF
    As a result of renewed focus on great power competition, the United States Marine Corps is currently undergoing a comprehensive force redesign. In accordance with the Commandant’s Planning Guidance and Force Design 2030, this redesign includes an increase of 14 rocket artillery batteries while divesting 14 cannon artillery batteries. These changes necessitate study into tactics and capabilities for rocket artillery against a peer threat in the Indo-Pacific region. This thesis implements an efficient design of experiments to simulate over 1.6 million Taiwan invasions using a stochastic, agent-based combat model. Varying tactics and capabilities as input, the model returns measures of effectiveness to serve as the response in metamodels, which are then analyzed for critical factors, interactions, and change points. The analysis provides insight into the principal factors affecting lethality and survivability for ground-based rocket fires. The major findings from this study include the need for increasingly distributed artillery formations, highly mobile launchers that can emplace and displace quickly, and the inadequacy of the unitary warheads currently employed by HIMARS units. Solutions robust to adversary actions and simulation variability can inform wargames and future studies as the Marine Corps continues to adapt in preparation for potential peer conflict.Captain, United States Marine CorpsApproved for public release. Distribution is unlimited

    Explosive Weapon Effects

    Get PDF
    Motivated by its strategic goal to improve human security and equipped with subject expertise in explosive hazards, the GICHD launched a research project to characterise explosive weapons. The GICHD perceives the debate on explosive weapons in populated areas (EWIPA) as an important humanitarian issue. The aim of this research into explosive weapons characteristics and their immediate, destructive effects on humans and structures, is to help inform the ongoing discussions on EWIPA, intended to reduce harm to civilians. The intention of the research is not to discuss the moral, political or legal implications of using explosive weapon systems in populated areas, but to examine their characteristics, effects and use from a technical perspective

    Space, the new frontier

    Get PDF
    Space program - high thrust boosters with greater payload capabilities, superior guidance and control, and astronaut trainin

    Planetary explorer liquid propulsion study

    Get PDF
    An analytical evaluation of several candidate monopropellant hydrazine propulsion system approaches is conducted in order to define the most suitable configuration for the combined velocity and attitude control system for the Planetary Explorer spacecraft. Both orbiter and probe-type missions to the planet Venus are considered. The spacecraft concept is that of a Delta launched spin-stabilized vehicle. Velocity control is obtained through preprogrammed pulse-mode firing of the thrusters in synchronism with the spacecraft spin rate. Configuration selection is found to be strongly influenced by the possible error torques induced by uncertainties in thruster operation and installation. The propulsion systems defined are based on maximum use of existing, qualified components. Ground support equipment requirements are defined and system development testing outlined

    Assessment of the Reconstructed Aerodynamics of the Mars Science Laboratory Entry Vehicle

    Get PDF
    On August 5, 2012, the Mars Science Laboratory entry vehicle successfully entered Mars atmosphere, flying a guided entry until parachute deploy. The Curiosity rover landed safely in Gale crater upon completion of the Entry Descent and Landing sequence. This paper compares the aerodynamics of the entry capsule extracted from onboard flight data, including Inertial Measurement Unit (IMU) accelerometer and rate gyro information, and heatshield surface pressure measurements. From the onboard data, static force and moment data has been extracted. This data is compared to preflight predictions. The information collected by MSL represents the most complete set of information collected during Mars entry to date. It allows the separation of aerodynamic performance from atmospheric conditions. The comparisons show the MSL aerodynamic characteristics have been identified and resolved to an accuracy better than the aerodynamic database uncertainties used in preflight simulations. A number of small anomalies have been identified and are discussed. This data will help revise aerodynamic databases for future missions and will guide computational fluid dynamics (CFD) development to improved prediction codes
    • …
    corecore