48 research outputs found

    People identification and tracking through fusion of facial and gait features

    Get PDF
    This paper reviews the contemporary (face, gait, and fusion) computational approaches for automatic human identification at a distance. For remote identification, there may exist large intra-class variations that can affect the performance of face/gait systems substantially. First, we review the face recognition algorithms in light of factors, such as illumination, resolution, blur, occlusion, and pose. Then we introduce several popular gait feature templates, and the algorithms against factors such as shoe, carrying condition, camera view, walking surface, elapsed time, and clothing. The motivation of fusing face and gait, is that, gait is less sensitive to the factors that may affect face (e.g., low resolution, illumination, facial occlusion, etc.), while face is robust to the factors that may affect gait (walking surface, clothing, etc.). We review several most recent face and gait fusion methods with different strategies, and the significant performance gains suggest these two modality are complementary for human identification at a distance

    People identification and tracking through fusion of facial and gait features

    Get PDF
    This paper reviews the contemporary (face, gait, and fusion) computational approaches for automatic human identification at a distance. For remote identification, there may exist large intra-class variations that can affect the performance of face/gait systems substantially. First, we review the face recognition algorithms in light of factors, such as illumination, resolution, blur, occlusion, and pose. Then we introduce several popular gait feature templates, and the algorithms against factors such as shoe, carrying condition, camera view, walking surface, elapsed time, and clothing. The motivation of fusing face and gait, is that, gait is less sensitive to the factors that may affect face (e.g., low resolution, illumination, facial occlusion, etc.), while face is robust to the factors that may affect gait (walking surface, clothing, etc.). We review several most recent face and gait fusion methods with different strategies, and the significant performance gains suggest these two modality are complementary for human identification at a distance

    Enhanced Deep Learning Architectures for Face Liveness Detection for Static and Video Sequences

    Get PDF
    Face liveness detection is a critical preprocessing step in face recognition for avoiding face spoofing attacks, where an impostor can impersonate a valid user for authentication. While considerable research has been recently done in improving the accuracy of face liveness detection, the best current approaches use a two-step process of first applying non-linear anisotropic diffusion to the incoming image and then using a deep network for final liveness decision. Such an approach is not viable for real-time face liveness detection. We develop two end-to-end real-time solutions where nonlinear anisotropic diffusion based on an additive operator splitting scheme is first applied to an incoming static image, which enhances the edges and surface texture, and preserves the boundary locations in the real image. The diffused image is then forwarded to a pre-trained Specialized Convolutional Neural Network (SCNN) and the Inception network version 4, which identify the complex and deep features for face liveness classification. We evaluate the performance of our integrated approach using the SCNN and Inception v4 on the Replay-Attack dataset and Replay-Mobile dataset. The entire architecture is created in such a manner that, once trained, the face liveness detection can be accomplished in real-time. We achieve promising results of 96.03% and 96.21% face liveness detection accuracy with the SCNN, and 94.77% and 95.53% accuracy with the Inception v4, on the Replay-Attack, and Replay-Mobile datasets, respectively. We also develop a novel deep architecture for face liveness detection on video frames that uses the diffusion of images followed by a deep Convolutional Neural Network (CNN) and a Long Short-Term Memory (LSTM) to classify the video sequence as real or fake. Even though the use of CNN followed by LSTM is not new, combining it with diffusion (that has proven to be the best approach for single image liveness detection) is novel. Performance evaluation of our architecture on the REPLAY-ATTACK dataset gave 98.71% test accuracy and 2.77% Half Total Error Rate (HTER), and on the REPLAY-MOBILE dataset gave 95.41% accuracy and 5.28% HTER.https://doi.org/10.3390/e2210118

    KEER2022

    Get PDF
    Avanttítol: KEER2022. DiversitiesDescripció del recurs: 25 juliol 202

    Pattern Recognition

    Get PDF
    Pattern recognition is a very wide research field. It involves factors as diverse as sensors, feature extraction, pattern classification, decision fusion, applications and others. The signals processed are commonly one, two or three dimensional, the processing is done in real- time or takes hours and days, some systems look for one narrow object class, others search huge databases for entries with at least a small amount of similarity. No single person can claim expertise across the whole field, which develops rapidly, updates its paradigms and comprehends several philosophical approaches. This book reflects this diversity by presenting a selection of recent developments within the area of pattern recognition and related fields. It covers theoretical advances in classification and feature extraction as well as application-oriented works. Authors of these 25 works present and advocate recent achievements of their research related to the field of pattern recognition

    Enhanced Deep Learning Architectures for Face Liveness Detection for Static and Video Sequences

    Get PDF
    The major contribution of this research is the development of deep architectures for face liveness detection on a static image as well as video sequences that use a combination of texture analysis and deep Convolutional Neural Network (CNN) to classify the captured image or video as real or fake. Face recognition is a popular and efficient form of biometric authentication used in many software applications. One drawback of this technique is that, it is prone to face spoofing attacks, where an impostor can gain access to the system by presenting a photograph or recorded video of a valid user to the sensor. Thus, face liveness detection is a critical preprocessing step in face recognition authentication systems. The first part of our research was on face liveness detection on a static image, where we applied nonlinear diffusion based on an additive operator splitting scheme and a tri-diagonal matrix block-solver algorithm to the image, which enhances the edges and surface texture in the real image. The diffused image was then fed to a deep CNN to identify the complex and deep features for classification. We obtained high accuracy on the NUAA Photograph Impostor dataset using one of our enhanced architectures. In the second part of our research, we developed an end-to-end real-time solution for face liveness detection on static images, where instead of using a separate preprocessing step for diffusing the images, we used a combined architecture where the diffusion process and CNN were implemented in a single step. This integrated approach gave promising results with two different architectures, on the Replay-Attack and Replay-Mobile datasets. We also developed a novel deep architecture for face liveness detection on video frames that uses the diffusion of images followed by a deep CNN and Long Short-Term Memory (LSTM) to classify the video sequence as real or fake. Performance evaluation of our architecture on the Replay-Attack and Replay-Mobile datasets gave very competitive results. We performed liveness detection on video sequences using diffusion and the Two-Stream Inflated 3D ConvNet (I3D) architecture, and our experiments on the Replay-Attack and Replay-Mobile datasets gave very good results

    Towards Generalizable Deep Image Matting: Decomposition, Interaction, and Merging

    Get PDF
    Image matting refers to extracting the precise alpha mattes from images, playing a critical role in many downstream applications. Despite extensive attention, key challenges persist and motivate the research presented in this thesis. One major challenge is the reliance of auxiliary inputs in previous methods, hindering real-time practicality. To address this, we introduce fully automatic image matting by decomposing the task into high-level semantic segmentation and low-level details matting. We then incorporate plug-in modules to enhance the interaction between the sub-tasks through feature integration. Furthermore, we propose an attention-based mechanism to guide the matting process through collaboration merging. Another challenge lies in limited matting datasets, resulting in reliance on composite images and inferior performance on images in the wild. In response, our research proposes a composition route to mitigate the discrepancies and result in remarkable generalization ability. Additionally, we construct numerous large datasets of high-quality real-world images with manually labeled alpha mattes, providing a solid foundation for training and evaluation. Moreover, our research uncovers new observations that warrant further investigation. Firstly, we systematically analyze and address privacy issues that have been neglected in previous portrait matting research. Secondly, we explore the adaptation of automatic matting methods to non-salient or transparent categories beyond salient ones. Furthermore, we collaborate with language modality to achieve a more controllable matting process, enabling specific target selection at a low cost. To validate our studies, we conduct extensive experiments and provide all codes and datasets through the link (https://github.com/JizhiziLi/). We believe that the analyses, methods, and datasets presented in this thesis will offer valuable insights for future research endeavors in the field of image matting
    corecore