20,862 research outputs found

    Analysis of Multi-Cell Downlink Cooperation with a Constrained Spatial Model

    Full text link
    Multi-cell cooperation (MCC) mitigates intercell interference and improves throughput at the cell edge. This paper considers a cooperative downlink, whereby cell-edge mobiles are served by multiple cooperative base stations. The cooperating base stations transmit identical signals over paths with non-identical path losses, and the receiving mobile performs diversity combining. The analysis in this paper is driven by a new expression for the conditional outage probability when signals arriving over different paths are combined in the presence of noise and interference, where the conditioning is with respect to the network topology and shadowing. The channel model accounts for path loss, shadowing, and Nakagami fading, and the Nakagami fading parameters do not need to be identical for all paths. To study performance over a wide class of network topologies, a random spatial model is adopted, and performance is found by statistically characterizing the rates provided on the downlinks. To model realistic networks, the model requires a minimum separation among base stations. Having adopted a realistic model and an accurate analysis, the paper proceeds to determine performance under several resource-allocation policies and provides insight regarding how the cell edge should be defined.Comment: 6 pages, 3 figures, IEEE Global Telecommun. Conf. (GLOBECOM), 2013, to appear. arXiv admin note: text overlap with arXiv:1210.366

    Millimeter Wave Cellular Networks: A MAC Layer Perspective

    Full text link
    The millimeter wave (mmWave) frequency band is seen as a key enabler of multi-gigabit wireless access in future cellular networks. In order to overcome the propagation challenges, mmWave systems use a large number of antenna elements both at the base station and at the user equipment, which lead to high directivity gains, fully-directional communications, and possible noise-limited operations. The fundamental differences between mmWave networks and traditional ones challenge the classical design constraints, objectives, and available degrees of freedom. This paper addresses the implications that highly directional communication has on the design of an efficient medium access control (MAC) layer. The paper discusses key MAC layer issues, such as synchronization, random access, handover, channelization, interference management, scheduling, and association. The paper provides an integrated view on MAC layer issues for cellular networks, identifies new challenges and tradeoffs, and provides novel insights and solution approaches.Comment: 21 pages, 9 figures, 2 tables, to appear in IEEE Transactions on Communication

    Integration of Carrier Aggregation and Dual Connectivity for the ns-3 mmWave Module

    Full text link
    Thanks to the wide availability of bandwidth, the millimeter wave (mmWave) frequencies will provide very high data rates to mobile users in next generation 5G cellular networks. However, mmWave links suffer from high isotropic pathloss and blockage from common materials, and are subject to an intermittent channel quality. Therefore, protocols and solutions at different layers in the cellular network and the TCP/IP protocol stack have been proposed and studied. A valuable tool for the end-to-end performance analysis of mmWave cellular networks is the ns-3 mmWave module, which already models in detail the channel, Physical (PHY) and Medium Access Control (MAC) layers, and extends the Long Term Evolution (LTE) stack for the higher layers. In this paper we present an implementation for the ns-3 mmWave module of multi connectivity techniques for 3GPP New Radio (NR) at mmWave frequencies, namely Carrier Aggregation (CA) and Dual Connectivity (DC), and discuss how they can be integrated to increase the functionalities offered by the ns-3 mmWave module.Comment: 9 pages, 7 figures, submitted to the Workshop on ns-3 (WNS3) 201

    On Modeling Coverage and Rate of Random Cellular Networks under Generic Channel Fading

    Get PDF
    In this paper we provide an analytic framework for computing the expected downlink coverage probability, and the associated data rate of cellular networks, where base stations are distributed in a random manner. The provided expressions are in computable integral forms that accommodate generic channel fading conditions. We develop these expressions by modelling the cellular interference using stochastic geometry analysis, then we employ them for comparing the coverage resulting from various channel fading conditions namely Rayleigh and Rician fading, in addition to the fading-less channel. Furthermore, we expand the work to accommodate the effects of random frequency reuse on the cellular coverage and rate. Monte-Carlo simulations are conducted to validate the theoretical analysis, where the results show a very close match
    • …
    corecore