275 research outputs found

    Bounding Helly numbers via Betti numbers

    Get PDF
    We show that very weak topological assumptions are enough to ensure the existence of a Helly-type theorem. More precisely, we show that for any non-negative integers bb and dd there exists an integer h(b,d)h(b,d) such that the following holds. If F\mathcal F is a finite family of subsets of Rd\mathbb R^d such that β~i(⋂G)≤b\tilde\beta_i\left(\bigcap\mathcal G\right) \le b for any G⊊F\mathcal G \subsetneq \mathcal F and every 0≤i≤⌈d/2⌉−10 \le i \le \lceil d/2 \rceil-1 then F\mathcal F has Helly number at most h(b,d)h(b,d). Here β~i\tilde\beta_i denotes the reduced Z2\mathbb Z_2-Betti numbers (with singular homology). These topological conditions are sharp: not controlling any of these ⌈d/2⌉\lceil d/2 \rceil first Betti numbers allow for families with unbounded Helly number. Our proofs combine homological non-embeddability results with a Ramsey-based approach to build, given an arbitrary simplicial complex KK, some well-behaved chain map C∗(K)→C∗(Rd)C_*(K) \to C_*(\mathbb R^d).Comment: 29 pages, 8 figure

    Topological obstructions for vertex numbers of Minkowski sums

    Full text link
    We show that for polytopes P_1, P_2, ..., P_r \subset \R^d, each having n_i \ge d+1 vertices, the Minkowski sum P_1 + P_2 + ... + P_r cannot achieve the maximum of \prod_i n_i vertices if r \ge d. This complements a recent result of Fukuda & Weibel (2006), who show that this is possible for up to d-1 summands. The result is obtained by combining methods from discrete geometry (Gale transforms) and topological combinatorics (van Kampen--type obstructions) as developed in R\"{o}rig, Sanyal, and Ziegler (2007).Comment: 13 pages, 2 figures; Improved exposition and less typos. Construction/example and remarks adde

    Optimally fast incremental Manhattan plane embedding and planar tight span construction

    Full text link
    We describe a data structure, a rectangular complex, that can be used to represent hyperconvex metric spaces that have the same topology (although not necessarily the same distance function) as subsets of the plane. We show how to use this data structure to construct the tight span of a metric space given as an n x n distance matrix, when the tight span is homeomorphic to a subset of the plane, in time O(n^2), and to add a single point to a planar tight span in time O(n). As an application of this construction, we show how to test whether a given finite metric space embeds isometrically into the Manhattan plane in time O(n^2), and add a single point to the space and re-test whether it has such an embedding in time O(n).Comment: 39 pages, 15 figure
    • …
    corecore