28 research outputs found

    Support-based lower bounds for the positive semidefinite rank of a nonnegative matrix

    Full text link
    The positive semidefinite rank of a nonnegative (m×n)(m\times n)-matrix~SS is the minimum number~qq such that there exist positive semidefinite (q×q)(q\times q)-matrices A1,,AmA_1,\dots,A_m, B1,,BnB_1,\dots,B_n such that S(k,\ell) = \mbox{tr}(A_k^* B_\ell). The most important, lower bound technique for nonnegative rank is solely based on the support of the matrix S, i.e., its zero/non-zero pattern. In this paper, we characterize the power of lower bounds on positive semidefinite rank based on solely on the support.Comment: 9 page

    Extension complexity of stable set polytopes of bipartite graphs

    Full text link
    The extension complexity xc(P)\mathsf{xc}(P) of a polytope PP is the minimum number of facets of a polytope that affinely projects to PP. Let GG be a bipartite graph with nn vertices, mm edges, and no isolated vertices. Let STAB(G)\mathsf{STAB}(G) be the convex hull of the stable sets of GG. It is easy to see that nxc(STAB(G))n+mn \leqslant \mathsf{xc} (\mathsf{STAB}(G)) \leqslant n+m. We improve both of these bounds. For the upper bound, we show that xc(STAB(G))\mathsf{xc} (\mathsf{STAB}(G)) is O(n2logn)O(\frac{n^2}{\log n}), which is an improvement when GG has quadratically many edges. For the lower bound, we prove that xc(STAB(G))\mathsf{xc} (\mathsf{STAB}(G)) is Ω(nlogn)\Omega(n \log n) when GG is the incidence graph of a finite projective plane. We also provide examples of 33-regular bipartite graphs GG such that the edge vs stable set matrix of GG has a fooling set of size E(G)|E(G)|.Comment: 13 pages, 2 figure

    Fooling sets and rank

    Full text link
    An n×nn\times n matrix MM is called a \textit{fooling-set matrix of size nn} if its diagonal entries are nonzero and Mk,M,k=0M_{k,\ell} M_{\ell,k} = 0 for every kk\ne \ell. Dietzfelbinger, Hromkovi{\v{c}}, and Schnitger (1996) showed that n \le (\mbox{rk} M)^2, regardless of over which field the rank is computed, and asked whether the exponent on \mbox{rk} M can be improved. We settle this question. In characteristic zero, we construct an infinite family of rational fooling-set matrices with size n = \binom{\mbox{rk} M+1}{2}. In nonzero characteristic, we construct an infinite family of matrices with n= (1+o(1))(\mbox{rk} M)^2.Comment: 10 pages. Now resolves the open problem also in characteristic

    Computing approximate PSD factorizations

    Get PDF
    We give an algorithm for computing approximate PSD factorizations of nonnegative matrices. The running time of the algorithm is polynomial in the dimensions of the input matrix, but exponential in the PSD rank and the approximation error. The main ingredient is an exact factorization algorithm when the rows and columns of the factors are constrained to lie in a general polyhedron. This strictly generalizes nonnegative matrix factorizations which can be captured by letting this polyhedron to be the nonnegative orthant.Comment: 10 page

    Smallest Compact Formulation for the Permutahedron

    Get PDF
    In this note, we consider the permutahedron, the convex hull of all permutations of {1,2…,n} . We show how to obtain an extended formulation for this polytope from any sorting network. By using the optimal Ajtai–Komlós–Szemerédi sorting network, this extended formulation has Θ(nlogn) variables and inequalities. Furthermore, from basic polyhedral arguments, we show that this is best possible (up to a multiplicative constant) since any extended formulation has at least Ω(nlogn) inequalities. The results easily extend to the generalized permutahedron.National Science Foundation (U.S.) (Contract CCF-0829878)National Science Foundation (U.S.) (Contract CCF-1115849)United States. Office of Naval Research (Grant 0014-05-1-0148
    corecore