7 research outputs found

    Combinatorial and Geometric Properties of Planar Laman Graphs

    Full text link
    Laman graphs naturally arise in structural mechanics and rigidity theory. Specifically, they characterize minimally rigid planar bar-and-joint systems which are frequently needed in robotics, as well as in molecular chemistry and polymer physics. We introduce three new combinatorial structures for planar Laman graphs: angular structures, angle labelings, and edge labelings. The latter two structures are related to Schnyder realizers for maximally planar graphs. We prove that planar Laman graphs are exactly the class of graphs that have an angular structure that is a tree, called angular tree, and that every angular tree has a corresponding angle labeling and edge labeling. Using a combination of these powerful combinatorial structures, we show that every planar Laman graph has an L-contact representation, that is, planar Laman graphs are contact graphs of axis-aligned L-shapes. Moreover, we show that planar Laman graphs and their subgraphs are the only graphs that can be represented this way. We present efficient algorithms that compute, for every planar Laman graph G, an angular tree, angle labeling, edge labeling, and finally an L-contact representation of G. The overall running time is O(n^2), where n is the number of vertices of G, and the L-contact representation is realized on the n x n grid.Comment: 17 pages, 11 figures, SODA 201

    A Note on Plus-Contacts, Rectangular Duals, and Box-Orthogonal Drawings

    Full text link
    A plus-contact representation of a planar graph GG is called cc-balanced if for every plus shape +v+_v, the number of other plus shapes incident to each arm of +v+_v is at most cΔ+O(1) c \Delta +O(1), where Δ\Delta is the maximum degree of GG. Although small values of cc have been achieved for a few subclasses of planar graphs (e.g., 22- and 33-trees), it is unknown whether cc-balanced representations with c<1c<1 exist for arbitrary planar graphs. In this paper we compute (1/2)(1/2)-balanced plus-contact representations for all planar graphs that admit a rectangular dual. Our result implies that any graph with a rectangular dual has a 1-bend box-orthogonal drawings such that for each vertex vv, the box representing vv is a square of side length deg(v)2+O(1)\frac{deg(v)}{2}+ O(1).Comment: A poster related to this research appeared at the 25th International Symposium on Graph Drawing & Network Visualization (GD 2017

    Contact Representations of Graphs in 3D

    Full text link
    We study contact representations of graphs in which vertices are represented by axis-aligned polyhedra in 3D and edges are realized by non-zero area common boundaries between corresponding polyhedra. We show that for every 3-connected planar graph, there exists a simultaneous representation of the graph and its dual with 3D boxes. We give a linear-time algorithm for constructing such a representation. This result extends the existing primal-dual contact representations of planar graphs in 2D using circles and triangles. While contact graphs in 2D directly correspond to planar graphs, we next study representations of non-planar graphs in 3D. In particular we consider representations of optimal 1-planar graphs. A graph is 1-planar if there exists a drawing in the plane where each edge is crossed at most once, and an optimal n-vertex 1-planar graph has the maximum (4n - 8) number of edges. We describe a linear-time algorithm for representing optimal 1-planar graphs without separating 4-cycles with 3D boxes. However, not every optimal 1-planar graph admits a representation with boxes. Hence, we consider contact representations with the next simplest axis-aligned 3D object, L-shaped polyhedra. We provide a quadratic-time algorithm for representing optimal 1-planar graph with L-shaped polyhedra

    Restricted String Representations

    Get PDF
    A string representation of a graph assigns to every vertex a curve in the plane so that two curves intersect if and only if the represented vertices are adjacent. This work investigates string representations of graphs with an emphasis on the shapes of curves and the way they intersect. We strengthen some previously known results and show that every planar graph has string representations where every curve consists of axis-parallel line segments with at most two bends (those are the so-called B2B_2-VPG representations) and simultaneously two curves intersect each other at most once (those are the so-called 1-string representations). Thus, planar graphs are B2B_2-VPG 11-string graphs. We further show that with some restrictions on the shapes of the curves, string representations can be used to produce approximation algorithms for several hard problems. The B2B_2-VPG representations of planar graphs satisfy these restrictions. We attempt to further restrict the number of bends in VPG representations for subclasses of planar graphs, and investigate B1B_1-VPG representations. We propose new classes of string representations for planar graphs that we call ``order-preserving.'' Order-preservation is an interesting property which relates the string representation to the planar embedding of the graph, and we believe that it might prove useful when constructing string representations. Finally, we extend our investigation of string representations to string representations that require some curves to intersect multiple times. We show that there are outer-string graphs that require an exponential number of crossings in their outer-string representations. Our construction also proves that 1-planar graphs, i.e., graphs that are no longer planar, yet fairly close to planar graphs, may have string representations, but they are not always 1-string

    Combinatorial and geometric properties of planar Laman graphs

    No full text
    Laman graphs naturally arise in structural mechanics and rigidity theory. Specifically, they characterize minimally rigid planar bar-and-joint systems which are frequently needed in robotics, as well as in molecular chemistry and polymer physics. We introduce three new combinatorial structures for planar Laman graphs: angular structures, angle labelings, and edge labelings. The latter two structures are related to Schnyder realizers for maximally planar graphs. We prove that planar Laman graphs are exactly the class of graphs that have an angular structure that is a tree, called angular tree, and that every angular tree has a corresponding angle labeling and edge labeling. Using a combination of these powerful combinatorial structures, we show that every planar Laman graph has an L-contact representation, that is, planar Laman graphs are contact graphs of axis-aligned L-shapes. Moreover, we show that planar Laman graphs and their subgraphs are the only graphs that can be represented this way. We present efficient algorithms that compute, for every planar Laman graph G, an angular tree, angle labeling, edge labeling, and finally an L-contact representation of G. The overall running time is O(n^2), where n is the number of vertices of G, and the L-contact representation is realized on the n x n grid

    27th Annual European Symposium on Algorithms: ESA 2019, September 9-11, 2019, Munich/Garching, Germany

    Get PDF
    corecore