
Restricted String Representations

by

Martin Derka

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Computer Science

Waterloo, Ontario, Canada, 2017

c© Martin Derka 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/144151017?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the

Examining Committee is by majority vote.

External Examiner David Eppstein

Professor

Supervisor Therese Biedl

Professor

Internal Member Anna Lubiw

Professor

Internal Member Lap Chi Lau

Associate Professor

Internal-External Member Bruce Richter

Professor

ii

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Abstract

A string representation of a graph assigns to every vertex a curve in the plane so

that two curves intersect if and only if the represented vertices are adjacent. This work

investigates string representations of graphs with an emphasis on the shapes of curves

and the way they intersect. We strengthen some previously known results and show that

every planar graph has string representations where every curve consists of axis-parallel line

segments with at most two bends (those are the so-called B2-VPG representations) and

simultaneously two curves intersect each other at most once (those are the so-called 1-string

representations). Thus, planar graphs are B2-VPG 1-string graphs. We further show that

with some restrictions on the shapes of the curves, string representations can be used to

produce approximation algorithms for several hard problems. The B2-VPG representations

of planar graphs satisfy these restrictions. We attempt to further restrict the number of

bends in VPG representations for subclasses of planar graphs, and investigate B1-VPG

representations. We propose new classes of string representations for planar graphs that

we call “order-preserving.” Order-preservation is an interesting property which relates the

string representation to the planar embedding of the graph, and we believe that it might

prove useful when constructing string representations. Finally, we extend our investigation

of string representations to string representations that require some curves to intersect

multiple times. We show that there are outer-string graphs that require an exponential

number of crossings in their outer-string representations. Our construction also proves that

1-planar graphs, i.e., graphs that are no longer planar, yet fairly close to planar graphs,

may have string representations, but they are not always 1-string.

iv

Acknowledgements

First and foremost, I would like to thank my supervisor, Prof. Therese Biedl, for giving

me the opportunity to pursue my Ph.D. degree at the University of Waterloo. Therese

is one of the best researchers that I ever met, and I am grateful for the opportunity to

learn from her. I highly appreciate and value her guidance, expertise, attention to detail

and all the time that she invested in me. I would also like to thank my thesis committee,

professors Anna Lubiw, Bruce Richter, Lap Chi Lau and David Eppstein for their valuable

remarks and discussion.

A special thank you belongs to Prof. Alejandro López-Ortiz. Alex was one of the

first people I met at the University of Waterloo. He became my dear friend, collaborator,

advisor, and mentor. I will forever highly regard him for all the influence he had on my

life here in Waterloo. Alex passed away after a long and brave battle with an illness on

Sunday, March 12, 2017, and I am very sad that he cannot see the result of my work that

he helped to shape.

I would like to thank Wendy Rush who was always around to save me when I was lost.

Wendy was the person who I would go ask for opening my office every time I locked myself

out early in the morning. She would be the saviour who gets our printer working when it

decides not, offers help with booking rooms, and spends endless hours helping with travel

refund claims and paperwork that I do not know how to handle myself.

I would like to acknowledge and thank Prof. Petr Hliněný, my undergraduate and

graduate supervisor from Brno, for seeing my potential back in the early days, raising my

interest in graph theory and helping to form my career path. I also thank professors Markus

Chimani, Drago Bokal, Gelasio Salazar, and Jan Kratochv́ıl for broadening my horizons

with many fruitful discussions, both of academic and leisure nature. Last, but not least, I

would like to say thank you to Prof. Ian Munro for being my friend and offering words of

advice whenever needed.

I would further like to thank all the fellow students and my friends in the algorithms

and complexity group for helping to create motivating and supporting environment for me

and helping me to stay sane and during this long run. Those are especially Shahin Kamali,

v

Daniela Maftuleac, Saeed Mehrabi, Hisham El-Zein, Matthew Robertson, Simon Pratt,

Oliver Grant, Camila Pérez Gavilán and Amit Levi. I would also like to thank the friends

from my soccer team, and especially our dedicated captain, organizer, and great player,

Rafael Olaechea, for the numerous evenings of fun that we enjoyed together.

The biggest thank you of all belongs to my girlfriend Stephanie Zahorka for being the

love of my life. Stephanie patiently helped me to get through the long streaks of work while

chasing deadlines, brewed tons of cups of coffee during the long nights of writing papers,

and morally supported me during my entire studies. My thanks also belongs to my parents

and sister for their love and encouragement throughout my life.

Finally, I would like to thank NSERC and Vanier CGS for supporting my studies.

vi

Table of Contents

1 Introduction 1

2 Definitions and Preliminaries 4

2.1 Graph-theoretic preliminaries . 4

2.1.1 Subgraphs, subdivisions and minors 5

2.1.2 Common graph classes . 5

2.1.3 Planarity and embeddings . 6

2.2 String representations . 7

2.2.1 1-string representations . 10

2.2.2 Bk-VPG representations . 12

2.2.3 Outer-string representations . 15

2.2.4 Complexity of recognition . 16

2.2.5 Algorithmic implications of string representations 20

2.3 Organization of the thesis . 21

3 String Representations of Planar Graphs 23

3.1 Definitions and basic results . 24

3.1.1 Representation layouts . 26

vii

3.1.2 Private regions . 31

3.1.3 The tangling technique . 31

3.2 2-sided constructions for W-triangulations 33

3.3 3-sided constructions for W-triangulations 46

3.4 Extension from 4-connected triangulations to all planar graphs 56

3.5 Example . 59

3.6 Conclusions . 60

4 Approximation Algorithms for B1-VPG and B2-VPG Graphs 67

4.1 Decomposing into outer-string graphs . 68

4.1.1 What graphs are single-vertical? . 71

4.2 Decomposing into co-comparability graphs 73

4.2.1 Co-comparability graphs . 74

4.2.2 Cornered B1-VPG graphs . 75

4.2.3 From grounded to cornered . 75

4.2.4 From centered to grounded . 77

4.2.5 Making single-vertical B2-VPG representations centered 79

4.2.6 Putting it all together . 80

4.3 Applications . 81

4.4 Conclusions . 83

5 B1-VPG Representations 85

5.1 Known B1-VPG representations . 86

5.1.1 Planar bipartite graphs . 86

5.1.2 Series-parallel graphs . 88

viii

5.1.3 Laman graphs . 89

5.1.4 Planar 3-trees . 91

5.1.5 Other graph classes . 92

5.2 New B1-VPG representations . 93

5.2.1 Planar partial 3-trees . 93

5.2.2 IO-Graphs . 98

5.2.3 Halin graphs . 104

5.3 Graphs with no B1-VPG representations 109

5.4 Conclusions . 110

6 Order-Preserving String Representations 113

6.1 Linearly order-preserving 1-string representations 114

6.2 Cyclically order-preserving 1-string representations 116

6.2.1 Graphs with no cyclically order-preserving representations 116

6.3 Outer-planar graphs . 121

6.3.1 Circle-chord representation . 123

6.3.2 B1-VPG representation . 126

6.3.3 Beyond outer-planar graphs? . 129

6.3.4 Order-preserving segment representations 132

6.4 Selectively order-preserving representations 134

6.5 Conclusions . 136

7 String Representations with Many Crossings 137

7.1 Exponential construction . 137

7.2 Outer-string graphs . 139

7.3 1-planar graphs . 147

ix

8 Future Directions 157

8.1 Graphs with no string representations . 157

8.2 B1-VPG and segment representations . 158

8.3 Outer-string graphs . 159

8.4 1-planar graphs . 161

8.5 Order-preserving string representations . 163

References 164

x

Chapter 1

Introduction

Graphs are an abstract way of describing networks, maps, diagrams, geometric objects, or

anything else that consists of sites (vertices, nodes, points, . . .) and connections (edges,

arcs, . . .). The usual visual representation of a graph is drawing the sites as points in the

plane and drawing a connection between two sitest as a curve between the corresponding

points. A string representation of a graph is a different way of representing a graph when

the sites themselves become curves drawn in the plane, and there is a connection between

two sites if and only if their curves intersect. Graphs that have string representations are

called string graphs. See Figure 1.1.

String graphs have many applications in civil, electrical and computer engineering. For

instance, in VLSI design, we need to transfer signals via channels embedded into circuit

boards. The channels on their own cannot cross and therefore, they are embedded into

circuit boards in several crossing-free layers. There is a strong desire to reduce the number

of layers as it reduces the manufacturing cost. Minimizing the number of layers is the same

thing as solving the colouring problem on a string graph. In consequence, one wonders

what graphs can be string graphs. As a further restriction, the shapes of the conductive

channels cannot be arbitrary, since only some angles are allowed when the channels need

to be bent. This motivates the main question of the thesis: What graphs have a string

representation that satisfies certain restrictions on the strings?

For another example of an application, imagine a manufacturing plant which is partly

1

(a) A graph. (b) A string representation.

Figure 1.1: A graph with a string representation.

operated by autonomous robots. The robots are mobile and have set routes along which

they can move. The network of all such routes forms a string graph. Selecting the maximum

set of robots that can move along the routes at the same time without any possibility of

colliding is the same as selecting the maximum independent set in such a string graph. The

problem is NP-hard in general graphs, and even NP-hard to approximate within a factor of

o(nǫ), but as we show in this work, a suitable set of restrictions on the shapes of the curves

in a string representation makes the problem approximable in polynomial time within a

factor of O(log n).

Finally, string graphs are interesting from the theoretical perspective as they have strong

relations to crossing numbers and rotation systems of graphs. One of the immediately

related questions is whether a given rotation system of a complete graph Kn has a realization

in which no pair of incident edges intersects (this is so-called semi-simple drawing [4]). This

can be rephrased as a problem of realizing a string graph.

Main questions. It is well known that there are graphs that do not have string repre-

sentations, i.e., not every graph is a string graph. The only known class of graphs without

string representations is the class of graphs that contain a full subdivision of a non-planar

graph as an induced minor. Yet, there is no proof that all the other graphs are string

graphs. Thus, one of the main questions in this field is what kind of graph classes always

2

have (or never have) string representations. We investigate string representations when

some natural restrictions (such as those stemming from the VLSI design) on the shape of

curves and the way they intersect are imposed. We investigate their existence, relationships

with other graph classes, and also algorithmic improvements that such representations yield.

A detailed overview of the thesis organization is provided in Section 2.3 once the main

definitions have been provided.

3

Chapter 2

Definitions and Preliminaries

2.1 Graph-theoretic preliminaries

A graph G is a pair (V,E) where V is a set of vertices and E is a set of vertex pairs called

edges. The number of vertices is commonly denoted by n and the number of edges by m. If

e = {u, v} is an edge of G, we sometimes write e = uv and say that u and v are the ends

of e. We also say that e is incident to u and v, that u is a neighbour of v, and that u and v

are adjacent. The neighbourhood of v is the set of all neighbours of v and it is denoted by

N(v). The size of the neighbourhood |N(v)| is called the degree of vertex v.

A graph is called undirected if the edges do not have an orientation, that is, the order

in which we write the endpoints u and v is irrelevant. A graph is called simple if it does

not contain multiple edges connecting the same pair of vertices, and if it does not contain

loops, i.e., edges of the form (v, v) for some vertex v ∈ V .

A graph G is called connected if for every pair of vertices u, v, there exists a sequence

of edges connecting u to v. Otherwise, it is called disconnected. The maximal connected

subgraphs of G are referred to as the connected components of G. A k-cut is a set of k

vertices that, upon removing from G, increases the number of connected components of G.

For k ≥ 1, a graph is called k-connected if it does not have a (k − 1)-cut. The connectivity

of G is the smallest k such that G is k-connected.

4

Unless stated otherwise, all graphs in this work are simple, undirected and connected.

2.1.1 Subgraphs, subdivisions and minors

Let G = (V,E) be a graph. A graph H = (W ⊆ V, F ⊆ E) is called a subgraph of G. If

H is a subgraph of G such that every edge (u, v) ∈ E with u, v ∈ W belongs to F as well,

then H is called an induced subgraph of G and is denoted by G[W].

An operation of replacing an edge e = (u, v) with a path of length 2 from u to v is

called subdividing an edge. A graph H obtained from G by subdividing a subset of edges

with new vertices is called a subdivision of G. A k-subdivision of G is a graph in which

every edge of G is subdivided precisely k times, and a full subdivision is a graph in which

every edge of G is subdivided at least once.

Let G be a graph with an edge e = (u, v). Consider the graph H obtained by removing

e from G, adding a new vertex x, connecting x to all neighbours y ∈ N(u) ∪N(v) with an

edge, and subsequently removing u and v (including the incident edges). We say that H is

obtained from G by contracting edge (u, v). If J is a subgraph of a graph obtained from G

by a sequence of edge deletions and contractions, then we call J a minor of G. An induced

minor is a graph H obtained from G by taking an induced subgraph and then contracting

edges.

2.1.2 Common graph classes

We use the following notation for some common graph classes. A complete graph on n

vertices is a graph that has n vertices and
(

n

2

)

edges and is denoted by Kn. A complete

bipartite graph is a graph whose vertex set V can be partitioned into two disjoint subsets

A,B such that no two vertices in A and B respectively are connected by an edge, and every

vertex v ∈ A is adjacent to every vertex w ∈ B. We denote such a graph by Kk,ℓ where

k = |A| and ℓ = |B|. A path of length k is a graph with k + 1 vertices where two vertices,

called ends, have degree 1 and the rest have degree 2. A path of length k is denoted by Pk.

A cycle of length k ≤ 3 is a graph on k vertices where every vertex has degree 2, and is

5

denoted by Ck. C3 is also called a triangle. A graph is called acyclic if it does not contain

a cycle as a subgraph. A tree is an acyclic graph with n vertices and n− 1 edges. A vertex

of degree 1 in a tree is referred to as a leaf. A graph for which every connected subgraph is

a tree is called a forest.

2.1.3 Planarity and embeddings

A planar graph is a graph that can be embedded in the plane, i.e., it can be drawn so that

no edges intersect except at common endpoints. We assume throughout this work that

planar graphs are given by a combinatorial embedding, i.e., by specifying the clockwise (CW)

cyclic order of incident edges around each vertex. A facial region is a connected region of

R2 − Γ where Γ is a planar drawing of G that conforms with the combinatorial embedding.

The circuit bounding this region can be read from the combinatorial embedding of G and

is referred to as a facial circuit. We sometimes refer to both a facial circuit and a facial

region as a face when the precise meaning is clear from the context. The outerface is the

one that corresponds to the unbounded region; all others are called interior faces. The

outerface cannot be read from the embedding; we assume throughout this paper that the

outerface of G has been specified. An edge of G is called interior if it does not belong to the

outerface. A vertex is called exterior if it is on the outerface and interior otherwise. A fixed

combinatorial embedding of a planar graph G together with a fixed outerface is referred to

as a planar embedding of G or, in short, a plane graph. We assume throughout this thesis

that one planar embedding of a graph G is fixed. Subgraphs inherit this embedding, i.e.,

they use the induced clockwise orders. Subgraphs also inherit the outerface by using as

outerface the one whose facial region contains the facial region of the outerface of G. An

outerplanar graph is a graph that can be embedded so that all vertices are on the outerface.

The following results that characterize planar and outerplanar graphs are well known: A

graph G is: (a) planar if and only if it contains no subdivision of K5 or K3,3 as a subgraph;

and (b) outerplanar if and only if it contains no subdivision of K2,3 or K4.

A maximal planar graph is a graph where one cannot add an edge without violating

planarity or simplicity. Such a graph is also often called triangulated because every face in

its planar embedding is a triangle. Given a plane graph G, a cycle C is called separating

6

if it contains at least one vertex in its interior and at least one vertex in its exterior. A

separating triangle is a separating cycle of length 3.

2.2 String representations

Let G = (V,E) be a graph. A string representation R of G is a collection R = {v | v ∈ V }
of curves in the plane so that u ∩ v is non-empty if and only if (u, v) ∈ E. We say that

a curve v represents vertex v. In this work, we denote the curve that represents a vertex

v by v (in bold). If the representation R is not clear from the context, we indicate it by

writing vR.

A point that belongs to at least two curves in a representation R is called an intersection

point. A string representation is proper if:

1. each v is a simple curve, i.e., it does not intersect itself;

2. R has finitely many intersection points;

3. each intersection point of curves belongs to precisely two curves; and

4. the cyclic order of curves u and v entering and leaving an intersection point is

u,v,u,v.

Note that the definition of a proper representation in particular disallows two curves

to overlap or touch (not even in an endpoint). Unless specified otherwise, all string

representations in this thesis are assumed to be proper, and we will usually not write this

qualifier. One exception is in Chapter 5, where we will consider “touching” representations

where endpoints may lie on other strings, but these can easily be converted into proper string

representations by extending the strings slightly1. Graphs that have string representations

are called string graphs.

1In general, one can construct a proper string representation for any graph with a string representation

that is not proper, but sometimes two proper intersections between two curves need to be created in order

to replace a contact.

7

(a) A planar graph. (b) A string representation. (c) A string representation of a full

subdivision.

Figure 2.1: Constructing string representation for planar graphs by tracing along edges [40].

String graphs were first studied in 1976 in the paper of Ehrlich, Even and Tarjan [40],

but similar concepts appeared before in the work of Benzer [10] and Sinden [80]. Ehrlich,

Even and Tarjan showed that every planar graph has a string representation [40]. They

noted that, given a planar drawing of a graph G, one can create a curve v for every vertex

v so that v traces (see Figure 2.1(b)) the edges incident to v to just beyond one half of

their length. This way, the curves u and v intersect whenever an edge (u, v) is present. See

also Figure 2.1.

Another easy argument showing the existence of string representations of planar graphs

uses the theorem that every planar can be represented by touching circles in the plane [66].

This is a so-called circle packing representation. Having a circle packing representation of a

planar graph G, one can enlarge every circle by a small ε, forcing the circles to intersect.

Since every circle can be turned into a curve by breaking at a suitable point, a string

representation exists. See Figure 2.2.

Given the existence of string representations for planar graphs, one immediately wonders

whether all graphs are in fact string graphs. It is well known that this is not the case. We

review the proof here because we will use similar arguments later.

We first need to define the following operation. Let v be a curve that represents a

vertex v of degree 2, and let x, y be the neighbours of v. The operation of contracting

8

(a) A circle packing representation corre-

sponding to the graph from Figure 2.1.

(b) A matching string representation.

Figure 2.2: Constructing string representations from circle packing representations.

curves x and y means choosing and endpoint of each x and y, placing vertices x and y into

those endpoints, and replacing v with a curve v′ that starts in x, follows x into its last

intersection with v before intersecting y, then follows v into its first intersection with y,

and follows y into y where it ends. Note that resulting curve v′ is not crossed by any other

curve.

Lemma 2.1 (Kratochv́ıl [67]). A full subdivision of a non-planar graph is not a string

graph.

Proof. Let G be a non-planar graph, and let H be a full subdivision. Assume that a string

representation of H exists. Contract every curve v for a vertex v ∈ V (G) into a point.

Observe that since every vertex u ∈ V (H) \ V (G) has degree 2, after the contraction,

no curve in the representation is crossed. Thus, one can place the vertices of G in the

contraction points and, for every edge in G, find a non-crossed sequence of curve segments

that connects its endpoints. Thus, the representation of G contains a planar drawing of G,

which is a contradiction.

On the other hand, if H is a full subdivision of a planar graph G, then a string

9

representation of H is easily constructed from a planar drawing of G by replacing every

vertex by a short string. See Figure 2.1c.

Recall that an induced minor is a graph H obtained from G by taking an induced

subgraph and then contracting edges. Kratochv́ıl argues that string graphs are closed under

taking induced minors [67]. We briefly review this here since it often will be crucial. First,

if G[W] is an induced subgraph of a string graph G, then the subset of curves w for every

w ∈ W in any string representation of G forms a string representation of G[W]. Thus, we

have the following:

Corollary 2.2. Let G be a graph that contains a full subdivision of a non-planar graph H

as an induced subgraph. Then G is not a string graph.

Observation 2.3. If G is a string graph, and H is obtained from G by contracting an edge,

then H is a string graph.

Proof. Let G be a string graph and let H be obtained from G by contracting an edge (u, x).

One can use a string representation of G to produce a string representation of H by tracing

along x with curve u (see Figure 2.3). Formally, if x intersects u multiple times, break x

into segments so that u ∪ x does not contain cycles. Then, for a sufficiently small ε > 0,

consider the set of points with distance at most ε to u ∪ x. The boundary of this area is a

closed curve that intersects all the curves intersected by u ∪ x. Breaking the boundary in a

point turns it into a string that replaces x and u after contracting (u, x).

The complexity of recognizing string graphs will be discussed in Section 2.2.4.

2.2.1 1-string representations

Both the construction of string representations for planar graphs from [40] and the one

based on circle-packing representation have the property that some curves intersect each

other twice. However, one would naturally want the curves to be more “well-behaved” and

intersect each other only once. Such representations are called 1-string representations.

A k-string representation is a generalization of a 1-string representation where every two

10

u

v

x

(a) An edge (u, x) to be contracted.

u
v

x

(b) Re-routing curve u to trace along x.

Figure 2.3: Illustration for the proof of Observation 2.3 and constructing a string represen-

tation for a graph when contracting an edge.

curves are allowed to intersect each other at most k times. The classes of graphs with

1-string and k-string representations are called 1-String and k-String, respectively. See

also Figure 2.4.

One could restrict string representations even further by requiring that the curves

have some specific shape. In 1984, Scheinerman conjectured that all planar graphs can be

represented as intersection graphs of line segments [79]. Such representations are called

segment representations and the corresponding class of graphs is Seg. See also Figure 2.5c.

Note that any graph in Seg is in 1-String.

We first list some graph classes that clearly belong to Seg. One can immediately see

that segment representations exist for cliques. A complete bipartite graph Km,n can be

represented by m horizontal segments intersecting n vertical segments. A circle graph is an

intersection graph of chords in a circle, thus it has segment representation by definition. A

graph G with vertices {1, . . . , n} is called a permutation graph if there exist two permutations

π1, π2 of {1, . . . , n} such that (i, j) is an edge of G if and only if π1 lists i, j in the opposite

order as π2 does. Put differently, if we place π1(1), . . . , π1(n) at points along a horizontal

line, and π2(1), . . . , π2(n) at points along a parallel horizontal line, and use the line segment

(π1(i), π2(i)) to represent vertex i, then the graph is the intersection graph of these segments.

11

(a) A planar graph. (b) A string representation. (c) A 1-string representation.

Figure 2.4: A planar graph with a string and 1-string representation.

Again, by definition, permutation graphs have segment representations.

Scheinerman’s conjecture was proved first for bipartite planar graphs [38, 59] with

the strengthening that every segment is vertical or horizontal. We review this result in

Section 5.1.1. Later, the conjecture was proved also for planar triangle-free graphs, which

can be represented by line segments with at most three distinct slopes [36].

As a crucial step towards proving Scheinerman’s conjecture, Chalopin, Gonçalves and

Ochem showed in 2007 that every planar graph is in 1-String [30, 31]. We will review the

idea of this construction, and build on top of it for a stronger result in Chapter 3.

Scheinerman’s conjecture was finally resolved in 2009 when it was proved by Chalopin

and Gonçalves [29] by extending the techniques of their previous result [30, 31].

Note that the construction referenced in Observation 2.3 creates curves that intersect

multiple times and thus Observation 2.3 does not hold for 1-string graphs.

2.2.2 Bk-VPG representations

Recall that one motivation for studying string graphs was connections in circuit boards.

Such connections usually consist of linear segments with restricted angles, and usually are

seen as orthogonal curves, i.e., curves that consist of horizontal and vertical segments only.

Such curves can be embedded as paths in a rectangular grid. We hence focus on graphs with

12

such a string representation and call a graph a VPG graph2 if it has a string representation

that uses only orthogonal curves. The class of VPG graphs was introduced by Asinowski et

al. [8].3 The Bk-VPG graphs are the graphs that have a string representation where curves

are orthogonal and have at most k bends. See also Figure 2.5b.

It is easy to see that all string graphs are VPG graphs as any string representation can

be embedded into a rectangular grid with a sufficient resolution. In particular, it follows

that planar graphs are VPG graphs and a VPG representation can be obtained, e.g., from

the construction of Ehrlich, Even and Tarjan. For bipartite planar graphs, orthogonal

curves can even be required to have no bends [38, 59] (see also Section 5.1.1) so they are in

B0-VPG. For arbitrary planar graphs, bends are required in orthogonal curves. Chaplick

and Ueckerdt showed that 2 bends per curve always suffice [35], i.e., that planar graphs are

in B2-VPG. Unfortunately, in Chaplick and Ueckerdt’s construction, curves may cross each

other repeatedly, and so it does not prove that planar graphs are in 1-String. In Chapter 3,

we strengthen their results and prove that planar graphs have string representations that

are simultaneously 1-string and B2-VPG.

One advantage of Bk-VPG representations is that the coordinates needed to describe

such a representation are small, a result that will be useful later:

Lemma 2.4. For any Bk-VPG representation R, there is a Bk-VPG representation R′

such that all segments have distinct coordinates in an O(kn)×O(kn)-grid.

Proof. Every vertical segment s in R is intersected by horizontal segments only. As all

the intersections are proper, s can be shifted by a small amount both left and right. By

repeatedly shifting a vertical segment, we can construct a representation in which all vertical

segments have distinct coordinates. Subsequently, we can apply an analogous argument

to horizontal segments, and repeatedly shifting a segment up or down, we can construct a

representation R′ in which all segments have distinct coordinates.

2As in “Vertex-intersection graph of Paths in a Grid.”
3The definition of VPG graphs used here is slightly different from [8]. While in [8], two paths in a grid

intersect whenever they share a point (e.g., overlaps count as intersections), we require that all crossing are

proper (and disallow overlaps).

13

(a) A planar graph. (b) A B2-VPG representation. (c) A segment representation.

Figure 2.5: A planar graph with a B2-VPG and segment representation.

Since every curve has at most k bends, it has at most k + 1 segments. The entire

representation has at most n(k + 1) segments all together. Since only the coordinates that

contain a segment are necessary, the entire representation can be embedded into a grid of

size O(kn)×O(kn).

Bk-VPG representations were further investigated by Chaplick, Jeĺınek, Kratochov́ıl and

Vyskočil [67] who studied the complexity of recognition (see more details in Section 2.2.4)

and the relationship between Bk-VPG and Bk+1-VPG graphs (see Sections 2.2.4 and 5.3).

Apart from the motivation of Bk-VPG graphs mentioned above, we are especially

interested in B1-VPG graphs, and in particular those that use only ⑤❧ and ⑤❤ as shapes. The

reason is that there is a relationship between such graphs (which we call {⑤❧, ⑤❤}-graphs) and
Seg: every such B1-VPG representation can be “stretched” into a segment representation.

This statement was proved by Middendorf and Pfeiffer in 1992 [74]. In fact, a stronger

claim holds: The stretching preserves the order of intersections along curves. We state the

result here, and give the proof in Chapter 6 which will be concerned with order-preserving

(in some sense) string representations.

Lemma 2.5 (Middendorf, Pfeiffer [74]). Let G be a graph with a B1-VPG representation

R that uses only curves of shapes ⑤❧ and ⑤❤. There is a string representation S of G such

that every curve in S is a line segment.

14

Naturally, one wonders whether the other direction is true. Thus, can every segment

representation be converted to a B1-VPG representation with ⑤❧ and ⑤❤ curves? To our

knowledge, this question remains open. Note that if it were true, then every planar graph

would be a B1-VPG graph by the results of Chalopin and Gonçalves [29]. As it is, we do

not know whether every planar graph is a B1-VPG graph, and this is, in fact, one of the

big remaining open questions in the field4.

2.2.3 Outer-string representations

An outer-string representation of a graph is a string representation in which curves lie inside

a disk such that each curve attaches to the boundary of the disk by one of its endpoints. An

outer-string graph is a graph that has an outer-string representation. Outer-string graphs

were introduced by Kratochv́ıl in 1991 [67] and investigated later, see e.g. [48, 47]. Clearly,

not all graphs are outer-string by Lemma 2.1. However, even some string graphs are not

outer-string.

Lemma 2.6. Let G be a planar graph that is not outer-planar. Any full subdivision H of

G is a string graph that does not have an outer-string representation.

Proof. Since G is planar, so is H, and thus it has a string representation. The proof that

H cannot be outer-string is similar to the proof of Lemma 2.1. Assume that an outer-string

representation R of H exists. Let B be the boundary of R. Contract every curve v for

a vertex v ∈ V (G) into its end on B. Observe that since every vertex u ∈ V (H) \ V (G)

has degree 2, after the contraction, no curve in the representation is crossed. Thus, the

representation is planar. One can place the vertices of G at the contraction points and, for

every edge in G, find a non-crossed sequence of curve segments that connects its endpoints.

Since all the curves lie inside B and all the contracted points lie on B, the representation

contains an outer-planar drawing of G, which is a contradiction.

4Very recently, after this thesis has been submitted, Gonçalves et al. [55] positively resolved the question

by proving that every planar graph has a representation using intersecting ⑤❧’s.

15

Similarly to string graphs, one can pose some restrictions to the shapes of curves

in an outer-string representation and derive subclasses of outer-string graphs such as

1-outer-string, outer-segment [43], and Bk-outer-VPG graphs.

A comprehensive study of outer-string graphs was done by Cabello and Jejčič [25].

They showed that for any outer-planar graph G, any full subdivision H is an outer-string

graph which is also an outer-segment graph and a circle graph. Furthermore, this is an “if

and only if” relationship. This raises the question of whether all outer-string graphs are

outer-segment graphs. The answer to this, from the very same paper, is negative: there are

outer-string graphs that are not segment graphs, and thus they are not outer-segment. (We

will prove an even stronger statement in Chapter 7, where we argue that in outer-string

representations, curves sometimes have to cross each other an exponential number of times.)

On the other hand, there are graphs that are segment graphs but not outer-string graphs.

Hence, there is no containment between Seg and outer-string graphs [25]. Note that the

classes of outer-string and outer-segment graphs also are not subclasses of outer-planar and

planar graphs as every complete graph Kn is an outer-segment graph.

2.2.4 Complexity of recognition

String graph recognition was proved to be NP-hard by Kratchov́ıl in 1991 by a reduction

from At-Realizability [68]. We briefly review some key ideas here.

An abstract topological graph, in short an AT-graph, is a triple (V (G), E(G), I) where

I ⊆
(

E(G)
2

)

. At-Realizability is the problem where, given an abstract topological graph

(V (G), E(G), I), we ask whether there is a drawing of graph G in the plane where two

edges e, f cross if and only if {e, f} ∈ I. We say that a drawing realizes the AT-graph.

Kratochv́ıl proved that this problem is NP-hard [68] by reduction from planar 3-connected

3-Sat. Then he showed:

Lemma 2.7 (Kratochv́ıl [68]). At-Realizability reduces to the problem of string graph

recognition.

Proof. Given an AT-graph G = (V,E, I), define:

16

• a set of incidence-vertices X = {(u, e)|e ∈ E and u is incident to e}

• for every incidence-vertex x = (u, e) ∈ X, two incidence-edges (u, x) and (e, x). Let

Y be all these incidence-edges.

Consider the graph H = (W = V ∪ E ∪X,F = Y ∪ I). We claim that H is a string

graph if and only if G is realizable.

Let G be realized as a drawing Γ. Obtain a string representation of G by shortening

every edge e slightly to obtain e, replacing each vertex v of Γ with a short curve to get

v, and connecting v to an incident e with a curve that represents vertex (v, e) ∈ X. See

Figure 2.6.

For the converse, let H be a string graph. Since the vertices in X have degree 2, we

may assume that every curve x has precisely two intersections with other curves [68, p. 68].

Let e = (v, w) be an edge of G, and let xv = (e, v) and xw = (w, e) be its incidence vertices.

By walking around e and cutting off appropriately, we may assume that e begins and ends

at its intersections with xv and xw, see also Figure 2.7. By contracting every curve v for

v ∈ V and x for a vertex x ∈ X a point, we obtain a drawing of G where edges e and e′

intersect if and only if e and e′ intersected, which implies that (e, e′) ∈ I.

In consequence, recognizing string graphs is NP-hard. Note that the proof of Lemma 2.7

does not imply hardness of recognition of 1-string graphs as At-Realizability does not

pose any restrictions on the number of intersections between two edges. Also, the string

representation used to produce a realization in the proof may require multiple intersections

of two curves as edge-curves need to start in the proximity of incidence-curves (cf. Figure 2.7).

NP-hardness of recognizing 1-string graphs was proved, with an entirely different approach,

in [69].

It is not straightforward to see whether recognizing string graphs belongs to NP: there are

string graphs that have string representations that require a number of crossings exponential

in n ([70], we review this in Section 7.1). Thus, string representations cannot be simply

“non-deterministically guessed” in polynomial time. The proof that the recognition problem

of string graphs is in NP was provided by Schaefer et al. in 2003 [78]. So we have:

17

e

u

(a)

e

u

(b)

Figure 2.6: (a) A neighbourhood of a vertex in a drawing of a graph. (b) A corresponding

representation in a string graph.

v

xv

e

(a) Original position of e.

v

xv

e

(b) Bending and routing e so that it ends by the

incidence-vertex curve.

Figure 2.7: An edge curve can be extended so that it has both ends in the proximity of an

incidence-vertex curve.

18

Lemma 2.8 (Schaefer et al. [78]). The recognition problem of string graphs is NP-complete.

We now briefly discuss complexity issues for string representations with restricted shapes:

• The recognition problem of graphs with segment representations (class Seg) is

complete in the existential theory of the reals, ∃R [69]. The complexity class ∃R
is known to contain NP and is known to belong to PSPACE [77]. However, it is

unknown if ∃R belongs to NP. Thus, we do not know if recognizing segment graphs is

in NP.

• The recognition of k-string graphs is in NP due to the bound on the number of

intersections. For each curve, one can non-deterministically “guess” the number

and order of intersections with other curves, which provides a unique combinatorial

description of the representation. Testing whether this can be realized then amounts

to testing planarity of a suitably defined graph (see also Lemma 6.1 in Chapter 6

where we review this in more detail).

For every k, the recognition problem of k-string graphs was established to be NP-

complete by Kratochv́ıl in 1994 [69]. By the same paper, the recognition of 1-string

graphs is NP-hard even if a 2-string representation of the same graph is given. Also,

for every k, k-String 6= k + 1-String.

• The situation is much simpler for Bk-VPG graphs as their representations can be

embedded into a grid of size O(kn) × O(kn). Thus, for a fixed k, the recognition

problem of Bk-VPG graphs is clearly in NP. The hardness was shown by Chaplick

et al. in 2012 [33] who showed that for every k, the class of Bk+1-VPG graphs is

strictly larger than Bk-VPG graphs, and the recognition problem of Bk-VPG graphs

is NP-complete even if a Bk+1-VPG representation is given.

• The complexity of recognition of outer-string graphs is open. We will show in

Section 7.2, Lemma 7.2 that it is in NP, but it remains unknown whether it is

NP-hard.

19

2.2.5 Algorithmic implications of string representations

There are a number of algorithmic results for various classes of string and outer-string

graphs, which we list here. The bottom line is that imposing restrictions on curves in a

string representation might be favourable for algorithmic questions.

We first list some results for arbitrary string graphs. The Maximum Clique problem

on string graphs was investigated by Middendorf and Pfeiffer [74]. They showed that it

remains NP-hard in general string graphs, but presented polynomial algorithms for some

restricted subclasses of string graphs (so-called opposite angle string graphs). The cop

number of a graph G is the smallest k such that k cops win the game of cops and robber

on G. Gavenčiak et al. [51] showed that string graphs have cop number at most 15.

There also exist some results that utilize a divide-and-conquer approach. We need a

definition. A separator in a graph G = (V,E) is a subset S of the vertex set V such that

no connected component of G[V \ S] has more than 2
3
|V | vertices. Matoušek [73] showed

that every string graph with m edges admits a vertex separator of size O(
√
m logm). Fox

and Pach conjectured that every string graph has a separator of size O(
√
m) [45]. This

has been proved for k-string graphs if k is constant [44] and very recently for all string

graphs by Lee in [72]. Algorithmic consequences of separators in string graphs are discussed

in [45, 49]. One example of a result based on separators is an nε-approximation algorithm

for Maximum Independent Set in k-string graphs by Fox and Pach [46]. Har-Peled and

Quanrund [58] show that separator theorems are applicable for approximation algorithms in

all sparse string graphs. However, none of results seem to lead to approximation algorithms

with factors better than O(nε) for all string graphs.

Now we list some results for outer-string graphs. In 2015, Keil et al. [63, 61] described an

algorithm based on dynamic programming for the Maximum Weight Independent Set

problem in an outer-string graph that runs in time polynomial in the size of the geometric

input representation of the graph. This is an especially interesting result since Minimum

Clique Cover, Colorability, Minimum Dominating Set, and Hamiltonian Cycle

are NP-complete for outer-string graphs as they contain circle graphs, the class of intersection

graphs of chords in a circle, as a subclass. Rok and Walczak [76] proved that the number of

colours needed for an outer-string graph G is a function of the maximum clique size ω(G)

20

(the graphs are so-called χ-bounded).

Finally, we list some results for Bk-VPG graphs. Since these include planar graphs

for k ≥ 2, most problems remain NP-hard on Bk-VPG graphs. Lahiri et al. gave an

O(log n)-approximation algorithm for independent set in B1-VPG graphs [71] (we will build

on top of this in Chapter 4). We know of no other algorithmic results for Bk-VPG graphs,

though many results are known for so-called Bk-EPG graphs (see e.g. [20, 21] and the

references therein for the definition and more details).

2.3 Organization of the thesis

In this thesis, we investigate string representations with emphasis on the shapes of curves and

the way they intersect. Refer to Figure 2.8 which visualizes the relationships between classes

of string representations. The thesis is organized as follows. Having reviewed definitions

and some known results in this chapter, in Chapter 3 we explore Bk-VPG representations

of planar graphs. Recall that the class of planar graphs has been proved to lie inside Seg,

but it is an open question whether all planar graphs have B1-VPG representations5. We

strengthen some previously known results and show that B2-VPG representations that are

simultaneously 1-string exist for planar graphs. In Chapter 4, we show that with some

restrictions on the shapes of the curves, string representations can be used to produce

approximation algorithms for several problems. The B2-VPG representations constructed

in Chapter 3 satisfy these restrictions. In Chapter 5, we attempt to further restrict the

number of bends in VPG representations for subclasses of planar graphs, and investigate

B1-VPG representations, especially for planar partial 3-trees and some subclasses of them.

In Chapter 6, we propose new classes of string representations for planar graphs that we call

“order-preserving.” Order-preservation is an interesting property which relates the string

representation to the planar embedding of the graph, and we believe that it might prove

useful when constructing string representations. In Chapter 7, we turn towards graphs

that are not 1-string and not even k-string for any polynomial k. We show that there are

outer-string graphs that require more than an exponential number of crossings in their

5See Section 8.2 for the discussion of recent results of Gonçalves et al. [55].

21

B1-VPG

1
-strin

g

BO(1)-VPG

nO(1)-string

string = VPG

S
E

G

{ },

B2-VPG

1-planar (Chapter 7)

1-planar with some kite edge

(Chapter 7)

1-planar with all kite edges

(Chapter 7)

Planar (Chapter 3)

Planar partial 3-trees

(Chapter 5)

IO-graphs (Chapter 5)

Figure 2.8: The relationships between classes of string representations.

outer-string representations. Our construction will also prove that so-called 1-planar graphs

are not always 1-string, but under some restrictions, they have Bk-VPG representations for

some constant k. We conclude in Chapter 8.

22

Chapter 3

String Representations of Planar

Graphs

In this chapter, we show that every planar graph has a string representation that simulta-

neously satisfies the requirements for 1-String (any two curves cross at most once) and

the requirements for B2-VPG (any curve is orthogonal and has at most two bends). Our

result hence re-proves, in one construction, the results by Chalopin et al. [30, 31] and the

result by Chaplick and Ueckerdt [35].

Theorem 3.1. Every planar graph has a 1-string B2-VPG representation.

Our construction for the proof of Theorem 3.1 will use all 8 possible shapes of B2-VPG

curves. As mentioned in Section 2.2, an advantage of Bk-VPG representations is that

the coordinates to describe such a representation are small—orthogonal drawings can be

deformed easily such that all bends are at integer coordinates. Every vertex curve has

at most two bends and hence at most 3 segments, so the representation can be made to

have coordinates in an O(n)×O(n)-grid with perimeter at most 3n. Note that none of the

previous results provided an intuition of the required size of the grid.

In addition to Theorem 3.1, we show that for 4-connected planar graphs, only a subset

of orthogonal curves with 2 bends is needed:

23

Theorem 3.2. Every 4-connected planar graph has a 1-string B2-VPG representation

where all curves have a shape of ⑤❞, ❤⑤❧, ❞⑤ or ❧⑤❤.

Our approach is inspired by the construction of 1-string representations by Chalopin,

Gonçalves and Ochem from 2007 [30, 31]. The authors proved the result in two steps.

First, they showed that maximal planar graphs without separating triangles admit 1-string

representations. By induction on the number of separating triangles, they then showed that

a 1-string representation exists for any maximal planar graph, and consequently for any

planar graph.

In order to show that maximal planar graphs without separating triangles have 1-string

representations, Chalopin et al. [31] used a method inspired by Whitney’s proof that

4-connected planar graphs are Hamiltonian [85]. Asano, Saito and Kikuchi later improved

Whitney’s technique and simplified his proof [7]. We use the same approach as [31], but

borrow ideas from [7] and develop them further to reduce the number of cases. Even so, the

proof is quite complicated. The reader may wish to consult Section 3.5, where we illustrate

the construction on a small graph.

The results of this chapter appeared in [12, 13].

3.1 Definitions and basic results

Let us restate a formal definition of a 1-string B2-VPG representation.

Definition 3.3 (1-string B2-VPG representation). A graph G has a 1-string B2-VPG

representation if every vertex v of G can be represented by a curve v such that:

1. Curve v is orthogonal, i.e., it consists of horizontal and vertical segments.

2. Curve v has at most two bends.

3. Curves u and v intersect at most once, and u intersects v if and only if (u, v) is an

edge of G.

24

In this chapter, “representation” means “1-string B2-VPG representation” since we do

not consider any other representations.

Our technique for constructing 1-string B2-VPG representations of a graph uses an inter-

mediate step referred to as a “partial 1-string B2-VPG representation of a W-triangulation

that satisfies the chord condition with respect to three chosen corners.” We define these

terms, and related graph terms, first.

A triangulated disk is a planar graph G for which the outerface is a simple cycle and

every interior face is a triangle. Recall that a separating triangle is a cycle C of length 3

such that G has vertices both inside and outside the region bounded by C (with respect to

the fixed embedding and outerface of G). Following the notation of [31], a W-triangulation

is a triangulated disk that does not contain a separating triangle. Recall that a chord of a

triangulated disk is an interior edge for which both endpoints are on the outerface.

Let X, Y be two vertices on the outerface of a connected planar graph so that neither of

them is a cut vertex. Define PXY to be the counter-clockwise (CCW) path on the outerface

from X to Y (including X and Y). We often study triangulated disks with three specified

distinct vertices A,B,C called the corners. A,B,C must appear on the outerface in CCW

order. We denote PAB = (a1, a2, . . . , ar), PBC = (b1, b2, . . . , bs) and PCA = (c1, c2, . . . , ct),

where ct = a1 = A, ar = b1 = B and bs = c1 = C.

Definition 3.4 (Chord condition). A W-triangulation G satisfies the chord condition with

respect to the corners A,B,C if G has no chord within PAB, PBC or PCA, i.e., no interior

edge of G has both ends on PAB, or both ends on PBC, or both ends on PCA.
1

Definition 3.5 (Partial 1-string B2-VPG representation). Let G be a connected planar

graph and E ′ ⊆ E(G) be a set of edges. An (E ′)-1-string B2-VPG representation of G is a

1-string B2-VPG representation of the subgraph (V (G), E ′), i.e., curves u,v cross if and

1For readers familiar with [31] or [7]: A W-triangulation that satisfies the chord condition with respect to

corners A,B,C is called a W-triangulation with 3-boundary PAB , PBC , PCA in [31], and the chord condition

is the same as Condition (W2b) in [7]. Also, for readers familiar with Tutte’s planar graph drawing

results [82, 83], satisfying the chord condition is the same (for internally triangulated graphs) as having a

drawing with all outer-face vertices on a triangle and A,B,C at the corners of the triangle.

25

PAB
PBC

PCA
C

B

A

(a) The chord condition is satisfied.

PAB
PBC

PCA
C

B

A

(b) The chord condition is violated.

Figure 3.1: An illustration of a W-triangulation with chords that do and do not satisfy the

chord condition.

only if (u, v) is an edge in E ′. If E ′ consists of all interior edges of G as well as some set

of edges F on the outerface, then we write (int ∪ F) representation instead.

In our constructions, we use (int ∪ F) representations with F = ∅ or F = {e}, where e

is an outerface edge incident to corner C of a W-triangulation. Edge e is called the special

edge, and we sometimes write (int ∪e) representation, rather than (int ∪{e}) representation.

3.1.1 Representation layouts

To create 1-string representations where vertex-curves have few bends, we need to impose

geometric restrictions on representations of subgraphs. Unfortunately, no one type of layout

seems sufficient for all cases, and we will hence have three different layout types illustrated

in Figure 3.2. We will be using the layouts to construct representations of W-triangulations,

however, we define them for 2-connected graphs in general.

Definition 3.6 (2-sided layout). Let G be a connected planar graph and A,B be two distinct

outerface vertices such that G ∪ {(A,B)} is 2-connected. An (int ∪ F) 1-string B2-VPG

representation of G (for some set F) has a 2-sided layout (with respect to corners A,B) if:

26

1. There exists a rectangle Θ that contains all intersections of curves and such that

(i) the top of Θ is intersected, from right to left in order, by the curves of the

vertices of PAB,

(ii) the bottom of Θ is intersected, from left to right in order, by the curves of the

vertices of PBA.

2. Any curve v of an outerface vertex v has at most one bend. (By (1.), this implies

that A and B have no bends.)

Definition 3.7 (3-sided layout). Let G be a W -triangulation and A,B,C be three distinct

vertices in CCW order on the outerface of G. Let F be a set of exactly one outerface edge

incident to C. An (int ∪ F) 1-string B2-VPG representation of G has a 3-sided layout

(with respect to corners A,B,C) if:

1. There exists a rectangle Θ containing all intersections of curves so that

(i) the top of Θ is intersected, from right to left in order, by the curves of the

vertices on PAB;

(ii) the left side of Θ is intersected, from top to bottom in order, by the curves of

the vertices on PBbs−1
, possibly followed by C; 2

(iii) the bottom of Θ is intersected, from right to left in order, by the curves of

vertices on Pc2A in reverse order, possibly followed by C;2

(iv) curve bs = C = c1 intersects the boundary of Θ exactly once; it is the bottommost

curve to intersect the left side of Θ if the special edge in F is (C, c2), and C

is the leftmost curve to intersect the bottom of Θ if the special edge in F is

(C, bs−1).

2. Any curve v of an outerface vertex v has at most one bend. (By (1.), this implies

that B has precisely one bend.)

3. A and C have no bends.

2Recall that (bs−1, C) and (C, c2) are the two incident edges of C on the outerface.

27

See Figures 3.2a and 3.2b for illustrations of a 2-sided and 3-sided layout. We also need

the concept of a reverse 3-sided layout, which is similar to the 3-sided layout except that B

is straight and A has a bend (see Figure 3.2c). Formally:

Definition 3.8 (Reverse 3-sided layout). Let G be a W -triangulation and A,B,C be three

distinct vertices in CCW order on the outerface of G. Let F be a set of exactly one outerface

edge incident to C. An (int ∪F) 1-string B2-VPG representation of G has a reverse 3-sided

layout (with respect to corners A,B,C) if:

1. There exists a rectangle Θ containing all intersections of curves so that

(i) the right side of Θ is intersected, from bottom to top in order, by the curves of

the vertices on PAB;

(ii) the left side of Θ is intersected, from top to bottom in order, by the curves of

the vertices on PBbs−1
, possibly followed by C;

(iii) the bottom of Θ is intersected, from right to left in order, by the curves of

vertices on Pc2A in reverse order, possibly followed by C;

(iv) curve bs = C = c1 intersects the boundary of Θ exactly once; it is the bottommost

curve to intersect the left side of Θ if the special edge in F is (C, c2), and C

is the leftmost curve to intersect the bottom of Θ if the special edge in F is

(C, bs−1).

2. Any curve v of an outerface vertex v has at most one bend. (By 1., this implies that

A has precisely one bend.)

3. B and C have no bends.

We sometimes refer to the rectangle Θ for these representations as a bounding box.

Figure 3.3a (which will serve as base case later) shows such layouts for a triangle and

varying choices of F .

28

AB other curves of PBA

other curves of PAB

(including C)

(a) 2-sided layout

A

B

other curves of PCA

other curves of PAB

C?

C?

c2

bs-1

o
th

e
r

c
u
rv

e
s o

f P
B

C

(b) 3-sided layout

A

B

other curves of PCA

o
th

e
r

c
u
rv

e
s

o
f

P
A

B

C?

C?

c2

bs-1

o
th

e
r c

u
rv

e
s

o
f P

B
C

(c) reverse 3-sided layout

PAB
PBC

PCA
C

B

A

bs-1

c2

(d) A W-triangulation with marked corners.

Figure 3.2: Illustration of a 2-sided layout, 3-sided layout, and reverse 3-sided layout

matching a W-triangulation.

29

A

B

C
Θ

AB C

B B B

B
B

B
B

AB C

Θ
AB C

Θ

A A A

AA

AA
Θ

B

C A

Θ
B

C
A

Θ

B

A
C Θ

C A

B

(a) 2-sided representations for F ∈ {{(A,C)}, {(B,C)}, ∅}.A

B

C
Θ

AB C

B B B

B
B

B
B

AB C

Θ
AB C

Θ

A A A

AA

AA
Θ

B

C A

Θ
B

C
A

Θ

B

A
C Θ

C A

B

(b) 3-sided and reverse 3-sided representations for F ∈ {{(B,C)}, {(A,C)}}.

Figure 3.3: (int ∪ F) representations of a triangle. Chair-shaped private regions are shaded

in dark grey.

30

3.1.2 Private regions

Our proof starts by constructing a 1-string B2-VPG representation for maximal planar

graphs without separating triangles. The construction is then extended to all maximal planar

graphs by merging representations of subgraphs obtained by splitting at separating triangles.

To permit the merge, we apply the technique used in [31] (and also used independently

in [42]): With every triangular face, create a region that intersects the curves of vertices of

the face in a predefined way and does not intersect anything else, specifically not any such

region of another face. Following the notation of [42], we call this a “private region” (but

we use a different shape).

Definition 3.9 (Chair-shape). A chair-shaped area is a region bounded by a 10-sided

orthogonal polygon with CW (clockwise) or CCW (counter-clockwise) sequence of interior

angles 90◦, 90◦, 270◦, 270◦, 90◦, 90◦, 90◦, 90◦, 270◦, 90◦. See also Figure 3.4.

Definition 3.10 (Private region). Let G be a planar graph with a partial 1-string B2-VPG

representation R and let f be a facial triangle in G. A private region of f is a chair-shaped

area Φ inside R such that:

1. Φ is intersected by no curves except for the ones representing vertices on f .

2. All the intersections of R are located outside of Φ.

3. For a suitable labeling of the vertices of f as {a, b, c}, Φ is intersected by two segments

of a and one segment of b and c. The intersections between these segments and Φ

occur at the edges of Φ as depicted in Figure 3.4.

Figure 3.3 shows private regions for face {A,B,C} for all choices of layout type and

edge-set F .

3.1.3 The tangling technique

Our constructions will frequently use the following “tangling technique”. Consider a set of

k vertical downward rays s1, s2, s3, . . . , sk placed beside each other in left to right order.

31

c

b

a

c

b

a c

b

a

c

b

a

c

b

a

c

b

a c

b

a

c

b

a

Figure 3.4: The chair-shaped private region of a triangle a, b, c with possible rotations and

flips. Note that labels of a, b, c can be arbitrarily permuted—the curve intersecting the

“base” of the chair does not need to be named a.

32

...
sks1

...
s1 sk

Figure 3.5: Bottom-tangling rightwards from s1 to sk rightwards.

The operation of bottom-tangling from s1 to sk rightwards stands for the following (see also

Figure 3.5):

1. For 1 < i ≤ k, stretch si downwards so that it ends below si−1.

2. For 1 ≤ i < k, bend si rightwards and stretch it so that it crosses si+1, but so that it

does not cross si+2.

This creates intersections for the path s1, s2, s3, . . . , sk.

We similarly define right-tangling upwards, top-tangling leftwards and left-tangling

downwards as rotation of bottom-tangling rightwards by 90◦, 180◦ and 270◦ CCW. We define

bottom-tangling leftwards as a horizontal flip (i.e., along the y-axis) of bottom-tangling

rightwards, and right-tangling downwards, top-tangling rightwards and left-tangling upwards

as 90◦, 180◦ and 270◦ CCW rotations of bottom-tangling leftwards.

3.2 2-sided constructions for W-triangulations

We first show the following lemma, which is the key result for Theorem 3.2 (representations

of 4-connected planar graphs), and will also be used as an ingredient for the proof of

Theorem 3.1 (representations of arbitrary planar graphs).

33

Lemma 3.11. Let G be a W-triangulation. Let A,B,C be any three corners with respect

to which G satisfies the chord condition, and let F be a set of at most one outerface edge

incident to C. Then G has an (int ∪F) 1-string B2-VPG representation with 2-sided layout

with respect to A,B. Furthermore, this representation has a chair-shaped private region for

every interior face of G.

We prove Lemma 3.11 by induction on the number of vertices.

First, let us make an observation that will greatly help to reduce the number of cases in

the induction step. Define G rev to be the graph obtained from graph G by reversing the

combinatorial embedding, but keeping the same outerface. This effectively switches corners

A and B, and replaces special edge (C, c2) by (C, bs−1) and vice versa. If G satisfies the

chord condition with respect to corners (A,B,C), then G rev satisfies the chord condition

with respect to corners (B,A,C). (With this new order, the corners are CCW on the

outerface of G rev, as required.)

Presume we have a 2-sided representation of G rev. Then we can obtain a 2-sided

representation of G by flipping the one of G rev horizontally. Hence for all the following

cases, we may (after possibly applying the above flipping operation) make a restriction on

which edge the special edge is.

Now we begin the induction. In the base case, n = 3, so G is a triangle, and the

three corners A,B,C must be the three vertices of this triangle. The desired (int ∪ F)

representations for all possible choices of F are depicted in Figure 3.3a.

The induction step for n ≥ 4 is divided into three cases.

Case 1: C has degree 2

Figure 3.6 illustrates this case. Since G is a triangulated disk with n ≥ 4, (bs−1, c2) is an

edge. Define G′ := G− {C} and F ′ := {(bs−1, c2)}. We claim that G′ satisfies the chord

condition for corners A′ := A,B′ := B and a suitable choice of C ′ ∈ {bs−1, c2}, and argue

this as follows.

34

• If c2 = A, then observe that bs−1 6= B as n ≥ 4 and deg(C) = 2. Set C ′ := bs−1. The

chord condition holds for G′ as bs−1 cannot be incident to a chord by planarity and

the chord condition for G.

• If c2 is incident to a chord that ends on PBC other than (bs−1, c2), then bs−1 6= B is

implied. Set C ′ := bs−1. The chord condition holds for G′ as bs−1 cannot be incident

to a chord by planarity and the chord condition for G.

• Otherwise, c2 6= A and c2 is not incident to a chord that ends in an interior vertex of

PBC other than bs−1, so set C ′ := c2; clearly the chord condition holds for G′.

Thus in either case, we can apply induction to G′.

Refer to Figure 3.6. To create a 2-sided representation of G, we use a 2-sided (int ∪ F ′)

representation R′ of G′ constructed with respect to the aforementioned corners. We

introduce a new vertical curve C placed between bs−1 and c2 below R′. Add a bend at the

upper end of C and extend it leftwards or rightwards. If the special edge e exists, then

extend C until it hits the curve of the other endpoint of e; else extend it only far enough to

allow for the creation of the private region.

With the exception of triangle {C, bs−1, c2}, all edges of G are interior/exterior in G

if and only if they are interior/exterior in G′, and hence represented by intersections as

needed. Edge (c2, bs−1) is represented in R′ by choice of F ′, and edges (bs−1, C) and (C, c2)

are represented as needed. So, this is indeed a 2-sided (int ∪ F)-representation.

Case 2: G has a chord incident to C

We may (after applying the reversal trick) assume that the special edge, if it exists, is

(C, bs−1). Refer to Figure 3.7.

By the chord condition, the chord incident to C has the form (C, ai) for some 1 < i < r.

The graph G can be split along the chord (C, ai) into two graphs G1 and G2. Both G1 and

G2 are bounded by simple cycles, hence they are triangulated disks. No edges were added,

so neither G1 nor G2 contains a separating triangle. So both of them are W-triangulations.

35

C A

B

c2

bs-1 G'

c2bs-1 AC

R'

Bc2bs-1 AC

R'

Bc2bs-1 AC

R'

B

C A

B

c2

bs-1 G'

c2bs-1 AC

R'

Bc2bs-1 AC

R'

Bc2bs-1 AC

R'

B

(a) F = ∅

C A

B

c2

bs-1 G'

c2bs-1 AC

R'

Bc2bs-1 AC

R'

Bc2bs-1 AC

R'

B

(b) F = {(C, c2)}

C A

B

c2

bs-1 G'

c2bs-1 AC

R'

Bc2bs-1 AC

R'

Bc2bs-1 AC

R'

B

(c) F = {(bs−1, C)}

Figure 3.6: Case 1: 2-sided construction if C has degree 2.

36

G1

G2

C A

B

ai

C

ai

ai

C

A

R2

R1

bs-1B
bs-1

Figure 3.7: Case 2(a): Constructing an (int ∪ (C, bs−1)) representation when C is incident

to a chord in 2-side layout. The special edge is marked with hatches.

We select (C,A, ai) as corners for G1 and (ai, B, C) as corners for G2 and can easily

verify that G1 and G2 satisfy the chord condition with respect to those corners:

• G1 has no chords on PAai or PCA as they would violate the chord condition in G.

There is no chord on PaiC as it is a single edge.

• G2 has no chords on PaiB or PBC as they would violate the chord condition in G.

There is no chord on PaiC as it is a single edge.

Inductively construct a 2-sided (int ∪ (C, ai)) representation R1 of G1 and a 2-sided

(int ∪ F) representation R2 of G2, both with the aforementioned corners. Note that CR

and aR

i are consecutive on the bottom side of R2 with CR to the left of aR

i .

Rotate R1 by 180◦, and translate it so that it is below R2 with aR

i in the same column

as aR

i . Stretch R1 and R2 horizontally as needed until CR is in the same column as

CR . Then aR
i and CR for R ∈ {R1, R2} can each be unified without adding bends by

adding vertical segments. The curves of outerface vertices of G then cross (after suitable

lengthening) the bounding box in the required order.

Every interior face f of G is contained in G1 or G2 and hence has a private region in R1

or R2. As our construction does not make any changes inside the bounding boxes of R1

37

and R2, the private region of f is contained in R as well.

All edges are represented since F was represented in R2, (C, ai) was represented in R1

and all other edges are interior/exterior in G if and only if they were interior/exterior in G1

or G2 and hence represented as needed.

Case 3: G has no chords incident to C and deg(C) ≥ 3

We may (after applying the reversal trick) assume that the special edge, if it exists, is

(C, c2).

In this case we split G in a more complicated fashion illustrated in Figure 3.8. Let

u1, . . . , uq be the neighbours of vertex C in clockwise order, starting with bs−1 = u1 and

ending with c2 = uq. We know that q = deg(C) ≥ 3 and that u2, . . . , uq−1 are not on the

outerface, since C is not incident to a chord. Let uj be a neighbour of C that has at least

one neighbour other than C on PCA, and among all those, choose j to be minimal. Such a

j exists because G is a triangulated disk and therefore uq−1 is adjacent to both C and uq.

We distinguish two sub-cases.

Case 3(a): j 6= 1. Denote the neighbours of uj on Pc2A by t1, . . . , tx in the order in which

they appear on Pc2A. Separate G into subgraphs as follows (see also Figure 3.8):

• The right graph GR is bounded by (A, PAB. . . , B, PBu1. . . , u1, u2, . . . , uj, tx,
PtxA. . . , A).

• Let GB be the graph bounded by (uj, t1,
Pt1tx. . . , tx, uj). We are chiefly interested in its

subgraph GQ := GB − uj. If t1 = tx, then GQ consists of just vertex t1.

• Let GL be the graph bounded by (C, PCt1. . . , t1, uj, C). We are chiefly interested in its

subgraph G0 := GL − {uj, C}. It may happen that G0 consists of just c2; this will be

considered below.

The idea is to obtain representations of these subgraphs and then to combine them

suitably. The following claim will be helpful to argue that the chord condition holds in for

the subgraphs with respect to the chosen corners.

38

C A

bs-1 = u1

t1 t4=tx

G0

GR

uj

uq = c2

u2

B

G1 G2

GQ

t2 t3

G3

(a) j < q − 1; G0 is non-trivial

C A

bs-1 = u1

t2 t4=tx

G1 G2

GR

uj=uq-1

uq = c2 = t1

u2

G3

B

t3

GQ

(b) j = q − 1; G0 = {c2}

Figure 3.8: Case 3(a): Splitting the graph when deg(C) ≥ 3, no chord is incident to C, and

j > 1.

39

Claim 3.12. Let G be a W-triangulation and v be a vertex of degree k ≥ 3 on the outerface

of G with neighbours w1, w2, w3, . . . , wk in clockwise order where w1 and wk are on the

outerface of G as well. The subgraph induced by w1, w2, w3, . . . , wk contains only edges of

the form (wi, wi+1).

Proof. Assume that the graph contains an edge (wi, wj) and there is a wx with i < x < j.

Then wi, wj and v form a separating triangle with x in its interior, so G is not a W-

triangulation.

We first explain how to obtain the representation RR used for GR. Clearly GR is a

W-triangulation, since u2, . . . , uj are interior vertices of G, and hence the outerface of GR

is a simple cycle. Set AR := A and BR := B. If B 6= u1 then set CR := u1 and observe that

GR satisfies the chord condition with respect to these corners:

• GR does not have any chords with both ends on PARBR
= PAB, PBRu1

⊆ PBC , or

PtxAR
⊆ PCA since G satisfies the chord condition.

• If there were any chords between a vertex in u1, . . . , uj and a vertex on PCRAR
, then

by CR = u1 the chord would either connect two neighbours of C (hence giving a

separating triangle of G; see also Claim 3.12), or connect some ui for i < j to PCA

(contradicting the minimality of j), or connect uj to some other vertex on PtxA

(contradicting that tx is the last neighbour of uj on PCA). Hence no such chord can

exist either.

If B = u1, then set CR := u2 (which exists by q ≥ 3) and similarly verify that it satisfies

the chord condition as PBRCR
is the edge (B, u2). Since CR ∈ {u1, u2} in both cases, we

can apply induction on GR and obtain a 2-sided (int ∪ (u1, u2)) representation RR with

respect to the aforementioned corners.

Next we obtain a representation for the graph G0, which is bounded by uj+1, . . . , uq, Pc2t1

and the neighbours of uj between t1 and uj+1 in CW order around uj . We distinguish two

cases:

40

(1) j = q − 1, and hence t1 = uq = c2 and G0 consists of only c2 (see Figure 3.8b). In this

case, the representation of R0 consists of a single vertical line segment c2.

(2) j < q − 1, so G0 contains at least three vertices uq−1, uq and t1. Then G0 is a W-

triangulation since C is not incident to a chord and by the choice of t1. Also, it satisfies

the chord condition with respect to corners A0 := c2, B0 := t1 and C0 := uj+1 since the

three paths on its outerface are sub-paths of PCA or contained in the neighbourhood of

C or uj. In this case, construct a 2-sided (int ∪ (uj+1, uj+2)) representation R0 of G0

with respect to these corners inductively.

Finally, we create a representation RQ of GQ. If GQ is a single vertex or a single edge,

then simply use vertical segments for the curves of its vertices (recall that there is no special

edge in GQ, so none of its outer edges need to be represented by crossings). Otherwise, we

can show:

Claim 3.13. GQ has a 2-sided (int ∪ ∅) 1-string B2-VPG representation with respect to

corners t1 and tx.

Proof. GQ is not necessarily 2-connected, so we cannot apply induction directly. Instead we

break it into x− 1 graphs G1, . . . , Gx−1, where for i = 1, . . . , x− 1 graph Gi is bounded by

Ptiti+1
as well as the neighbours of uj between ti and ti+1 in CCW order (see Figure 3.9(a)).

Note that Gi is either a single edge, or it is bounded by a simple cycle since uj has no

neighbours on PCA between ti and ti+1.

First, obtain a representation Ri of Gi as follows. If Gi is a single edge (ti, ti+1), then

let Ri consists of two vertical segments ti and ti+1. Otherwise, define three corners of Gi

to be Bi := ti, Ai := ti+1, and Ci an arbitrary third vertex on Ptiti+1
⊆ PCA. This vertex

Ci exists since the outerface of Gi is a simple cycle and (ti, ti+1, uj) is not a separating

triangle. Observe that Gi satisfies the chord condition since all paths on the outerface of

Gi are either part of PCA or in the neighbourhood of uj . Hence by induction there exists a

2-sided (int ∪ ∅) representation Ri of Gi with respect to the corners of Gi.

Since each representation Ri has at its leftmost end a vertical segment ti and at its

rightmost end a vertical segment ti+1, we can combine all these representations by aligning

41

uj

G1 G2
G3

t1 t2 t3

t4 = tx

(a)

→

Θ

G1

G2

G3

(empty)

t1 t2 t3 t4 = tx

(b)

Figure 3.9: (a) Graph GB. The boundary of GQ is shown bold. (b) Merging 2-sided (int ∪∅)
representations of Gi, 1 ≤ i ≤ 3, into a 2-sided (int ∪ ∅) representation of GQ.

tRi

i and t
Ri+

i horizontally and filling in the missing segment. See also Figure 3.9(b). One

easily verifies that the result is a 2-sided (int ∪ ∅) representation of GQ.

We now explain how to combine these three representations RR, RQ and R0; see also

Figure 3.10. Translate RQ so that it is below RR with tRR
x and t

RQ
x in the same column;

then connect these two curves with a vertical segment. Rotate R0 by 180◦ and translate

it so that it is below RR and to the left and above RQ, and tR

1 and t
RQ

1 are in the same

column; then connect these two curves with a vertical segment. Notice that the vertical

segments of uRR

2 , . . . ,uRR

j are at the bottom left of RR. Horizontally stretch R0 and/or RR

so that uRR

2 , . . . ,uRR

j are to the left of the vertical segment of uR

j+1, but to the right (if

j < q − 1) of the vertical segment of uR

j+2. There are such segments by j > 1.

Introduce a new horizontal segmentC and place it so that it intersects curves uq, . . . ,uj+2,

u2, . . . ,uj,uj+1 (after lengthening them, if needed), but omit the intersection with uq if the

special edge (C, uq = c2) does not exist (see Figures 3.10 (b)). Attach a downward vertical

segment to C at the left end. If j < q− 1, then top-tangle uq, . . . ,uj+2 rightwards. (Recall

from Section 3.1.3 that this creates intersections among all these curves.) Bottom-tangle

u2, . . . ,uj rightwards. The construction hence creates intersections for all edges in the

path u1, . . . , uq, except for (uj+2, uj+1) (which was represented in R0), (u2, u1) (which was

42

represented in RR), and (uj, uj+1) (which we represent below).

Bend and stretch uRR

j rightwards so that it crosses the curves of all its neighbours in

G0 ∪GQ; this includes uj+1. Finally, consider the path between the neighbours of uj CCW

from uj+1 to tx. Top-tangle curves of these vertices rightwards, but omit the intersection if

the edge is on the outerface (see e.g. (t2, t3) in Figure 3.10).

One verifies that all the edges are represented and the curves intersect the bounding

boxes as desired. The constructed representations contain private regions for all interior faces

of GR, GQ and G0 by induction. The remaining faces are of the form (C, ui, ui+1), 1 ≤ i < q,

and (uj, wk, wk+1) where wk and wk+1 are two consecutive neighbours of uj on the outerface

of G0 or GQ. Private regions for those faces are shown in Figure 3.10.

Case 3(b): j = 1, i.e., there exists a chord (bs−1, ci) for some ci ∈ PCA. In this case

we cannot use the above construction directly since it bends uj = u1 = bs−1 horizontally

rightwards to create intersections, but then uj no longer extends vertically downwards as

required for bs−1. Instead we use a different construction, illustrated in Figure 3.11.

Edge (bs−1, ci) is a chord from PBC to PCA. Let (bk, cℓ) be a chord from PBC to PCA

that maximizes k − ℓ, i.e., is furthest from C (our construction in this case actually works

for any chord from PBC to PCA—it is not necessary that k = s− 1). Note that possibly

ℓ = t (i.e., the chord is incident to A) or k = 1 (i.e., the chord is incident to B), but not

both by the chord condition. We assume here that ℓ < t, the other case is symmetric.

In order to construct a 2-sided (int ∪ F) representation of G, split the graph along

(bk, cℓ) into two W-triangulations G1 (which includes C and the special edge, if any) and

G2 (which includes A). Set (A,B, cℓ) as corners for G2 (these are three distinct vertices by

cℓ 6= A) and set (cℓ, bk, C) as corners for G1 and verify the chord condition:

• G1 has no chords on either PCcℓ ⊆ PCA or PbkC ⊆ PBC as they would contradict the

chord condition in G. The third side is a single edge (bk, cℓ) and so it does not have

any chords either.

• G2 has no chords on either PcℓA ⊆ PCA or PAB as they would violate the chord

condition in G. It does not have any chords on the path PBcℓ due to the selection of

the chord (bk, cℓ) and by the chord condition in G.

43

t1 t2 t3

C

R0

RQ

RR
bs-1

B

Auj

uq=c2

u2

uj+1

uj+2

t4 = tx

t1 t2 t3
C

R0

RQ

RR

bs-1B Auj

uq=c2

u2

uj+1

uj+2

t4 = tx t1
C

R0

RR

bs-1B uj

uq=c2

u2

uj+1

uj+2

RQ

. . .

t1 t2 t3

C

R0

RQ

RR
bs-1

B

Auj

uq=c2

u2

uj+1

uj+2

t4 = tx

(a) F = {(C, c2)}
t1 t2 t3

C

R0

RQ

RR
bs-1

B

Auj

uq=c2

u2

uj+1

uj+2

t4 = tx

t1 t2 t3
C

R0

RQ

RR

bs-1B Auj

uq=c2

u2

uj+1

uj+2

t4 = tx t1
C

R0

RR

bs-1B uj

uq=c2

u2

uj+1

uj+2

RQ

. . .

t1 t2 t3

C

R0

RQ

RR
bs-1

B

Auj

uq=c2

u2

uj+1

uj+2

t4 = tx

(b) F = ∅

Figure 3.10: Combining subgraphs in Case 3(a), 2-sided construction. The construction

matches the graph depicted in Figure 3.8a.

44

B

bk

clC A

→ bk
bk

C cl
A

B

cl
G1

G2

B bk C c2 cl A

G1

G2

Figure 3.11: Case 3(b): Construction of a 2-sided (int ∪ (C, c2)) representation of G with a

chord (bk, cℓ).

Thus, by induction, G1 has a 2-sided (int ∪ F) representation R1 and G2 has a 2-sided

(int ∪ (bk, cℓ)) representation R2 with respect to the aforementioned corners. Translate

and horizontally stretch R1 and/or R2 so that bR1

k and cR1

ℓ are aligned with bR2

k and cR2

ℓ ,

respectively, and connect each pair of curves with a vertical segment. Since bR1

k and cR1

ℓ

have no bends, this does not increase the number of bends on any curve and produces a

2-sided (int ∪ F) representation of G. All the faces in G have a private region inside one of

the representations of G1 or G2.

This ends the description of the construction in all cases, and hence proves Lemma 3.11.

We now show how Lemma 3.11 implies Theorem 3.2:

Proof of Theorem 3.2. Let G be a 4-connected planar graph. Assume first that G is

triangulated, which means that it is a W -triangulation. Let (A,B,C) be the outerface

vertices and start with an (int ∪ (B,C))-representation of G (with respect to corners

(A,B,C)) that exists by Lemma 3.11. The intersections of the other two outerface edges

(A,C) and (A,B) can be created by tangling B,A and C,A suitably (see Figure 3.12).

Theorem 3.2 also stipulates that every curve used in a representation has at most one

vertical segment. This is true for all curves added during the construction. Furthermore,

we join two copies of a curve only by aligning and connecting their vertical ends, so all

curves have at most one vertical segment.

45

Θ
B C A

Figure 3.12: Completing a 2-sided (int ∪ (B,C)) representation by adding intersections for

(A,B) and (A,C).

This proves Theorem 3.2 for 4-connected triangulations. To handle an arbitrary 4-

connected planar graph, stellate the graph, i.e., insert into each non-triangular face f a new

vertex v and connect it to all vertices on f . By 4-connectivity this creates no separating

triangle and the graph is triangulated afterwards. Finding a representation of the resulting

graph and deleting the curves of all added vertices yields the result.

3.3 3-sided constructions for W-triangulations

In the previous section, we proved the existence of B2-VPG representations with 2-sided

layout for 4-connected planar graphs. However, in order to show the existence of B2-

VPG representations for all planar graphs (Theorem 3.1), we will later also need B2-VPG

representations with 3-sided layouts. The proof of this is similar in spirit (distinguishing

cases by degree and neighbourhood of C), but the constructions are different and we hence

must redo all cases. Hence, we prove:

Lemma 3.14. Let G be a W-triangulation and let A,B,C be any three corners with respect

to which G satisfies the chord condition. For any e ∈ {(C, bs−1), (C, c2)}, G has an (int ∪ e)

1-string B2-VPG representation with 3-sided layout and an (int ∪ e) 1-string B2-VPG

representation with reverse 3-sided layout. Both representations have a chair-shaped private

region for every interior face.

46

The proof of Lemma 3.14 will use induction on the number of vertices. To combine the

representations of subgraphs, we sometimes need them to have a 2-sided layout, and hence

we frequently use Lemma 3.11 proved in Section 3.2. Also, notice that for Lemma 3.14

the special edge must exist (this is needed in Case 1 to find private regions), while for

Lemma 3.11, F is allowed to be empty.

We again reduce the number of cases in the proof of Lemma 3.14 by using the reversal

trick. DefineG rev as in Section 3.2. Presume we have a 3-sided/reverse 3-sided representation

of G rev. We can obtain a 3-sided/reverse 3-sided representation of G by flipping the reverse

3-sided/3-sided representation of G rev diagonally (i.e., along the line defined by (x = y)).

Again, this effectively switches corners A and B (corner C remains the same), and replaces

special edge (C, c2) by (C, bs−1) and vice versa. If G satisfies the chord condition with

respect to corners (A,B,C), then G rev satisfies the chord condition with respect to corners

(B,A,C). Hence for all the following cases, we may again (after possibly applying the above

flipping operation) make a restriction on which edge the special edge is. Alternatively, we

only need to give the construction for the 3-sided, but not for the reverse 3-sided layout.

So let G and a special edge e be given, and set F = {e}. In the base case, n = 3, so G

is a triangle, and the three corners A,B,C must be the three vertices of this triangle. The

desired (int ∪ F) representations for all possible choices of F are depicted in Figure 3.3a.

The induction step for n ≥ 4 uses the same case distinctions as the proof of Lemma 3.11.

Case 1: C has degree 2

Since G is a triangulated disk with n ≥ 4, (bs−1, c2) is an edge. Define G′ as in Section 3.2

to be G− {C} and recall that G′ satisfies the chord condition for corners A′ := A,B′ := B

and a suitable choice of C ′ ∈ {bs−1, c2}. Thus, we can apply induction to G′.

To create a 3-sided representation of G, we use a 3-sided (int ∪ F ′) representation R′ of

G′, where F ′ = {(bs−1, c2)}. Note that regardless of which vertex is C ′, we have bs−1 as

the bottommost curve on the left and c2 as the leftmost curve on the bottom. Introduce a

new horizontal segment representing C which intersects c2 if F = {(C, c2)}, or a vertical

segment which intersects bs−1 if F = {(C, bs−1)}.

47

C A

B

c2

bs-1 G'

c2

bs-1

B

A
C

R'

c2

bs-1

B

A
C

R'

c2bs-1 AC

R'

Bc2bs-1 AC

R'

Bc2bs-1 AC

R'

B

Figure 3.13: Case 1: 3-sided representation if C has degree 2.

After suitable lengthening, the curves intersect the bounding box in the required order.

One can find the chair-shaped private region for the only new face {C, c2, bs−1} as shown

in Figure 3.13. Observe that no bends were added to the curves of R′ and that C has no

bends as required.

Since we have given the constructions for both possible special edges, we can obtain the

reverse 3-sided representation by diagonally flipping a 3-sided representation of G rev.

Case 2: G has a chord incident to C

Let (C, ai) be a chord that minimizes i (i.e., is closest to A). Define W-triangulations

G1 and G2 with corners (C,A, ai) for G1 and (ai, B, C) for G2 as in Section 3.2 (see also

Figure 3.14), and recall that they satisfy the chord condition. So, we can apply induction

to both G1 and G2, obtain representations R1 and R2 (with respect to the aforementioned

corners) for them, and combine them suitably. We will do so for both possible choices of

special edge, and hence need not give the constructions for reverse 3-sided layout due to

the reversal trick.

Case 2(a): F = {(C, bs−1)}. Using Lemma 3.11, construct a 2-sided (int ∪ (C, ai))

representation R1 of G1 with respect to the aforementioned corners of G1. Inductively,

construct a 3-sided (int ∪ F) representation R2 of G2 with respect to the corners of G2.

Note that CR and aR

i are on the bottom side of R2 with CR to the left of aR

i .

48

G1

G2

C A

B

aibs-1

B

C

ai

ai

C

A

R2

R1

bs-1

Figure 3.14: Case 2(a): Constructing a 3-sided (int ∪ (C, bs−1)) representation when C is

incident to a chord.

Rotate R1 by 180◦. We can now merge R1 and R2 as described in Section 3.2 since all

relevant curves end vertically in R1 and R2. The curves of outerface vertices of G then cross

(after suitable lengthening) the bounding box in the required order. See also Figure 3.14.

Case 2(b): F = {(C, c2)}. For the 3-sided construction, it does not seem possible

to merge suitable representations of G1 and G2 directly, since the geometric restrictions

imposed onto curves A,B,C, c2 and ai by the 3-sided layout cannot be satisfied using

3-sided and 2-sided representations of G1 and G2. We hence use an entirely different

approach that splits the graph further; it resembles Case 1 in [7, Proof of Lemma 2] and

is illustrated in Figures 3.15 and 3.16. Let GQ = G1 − C, and observe that it is bounded

by Pc2A, PA,ai , and the path formed by the neighbours c2 = u1, u2, . . . , uq = ai of C in

G1 in CCW order. We must have q ≥ 2, but possibly G1 is a triangle {C,A, ai} and GQ

then degenerates into an edge. If GQ contains at least three vertices, then u2, . . . , uq−1 are

interior since chord (C, ai) was chosen closest to A, and so GQ is a W-triangulation.

We divide the proof into two subcases, depending on whether A 6= c2 or A = c2.

Case 2(b)1: A 6= c2. Select the corners of GQ as (AQ := c2, BQ := A,CQ := ai = uq),

and observe that it satisfies the chord condition since the three corners are distinct and

the three outerface paths are sub-paths of PCA and PAB or in the neighbourhood of C,

49

respectively. Apply Lemma 3.11 to construct a 2-sided (int ∪ (uq, uq−1)) representation

RQ of GQ with respect to the previously chosen corners of GQ. Inductively, construct a

3-sided (int ∪ (C, ai)) representation R2 of G2 with respect to the previously chosen corners

(ai, B, C).

To combine RQ with R2, rotate RQ by 180◦. Appropriately stretch RQ and translate it

so that it is below R2 with a
RQ

i and aR

i in the same column, and so that the vertical segment

of each of the curves uq−1, . . . ,u1 = c2 is to the left of the bounding box of R2. Then

a
RQ

i and aR

i can be unified without adding bends by adding a vertical segment. Curves

uq−1, . . . ,u1 = c2 in the rotated RQ can be appropriately stretched upwards, intersected by

CR after stretching it leftwards, and then top-tangled leftwards. All the curves of outerface

vertices of G then cross (after suitable lengthening) a bounding box in the required order.

All faces in G that are not interior to GQ or G2 are bounded by (C, uk, uk+1), 1 ≤ k < q.

The chair-shaped private regions for such faces can be found as shown in Figure 3.15.

Case 2(b)2: A = c2. In this case the previous construction cannot be applied since the

corners for GQ would not be distinct. We give an entirely different construction.

If GQ has at least 3 vertices, then q ≥ 3 since otherwise by A = c2 = u1 edge (A, uq)

would be a chord on PAB. Choose as corners for GQ the vertices AQ := A,BQ := ai = uq

and CQ := uq−1 and observe that the chord condition holds since all three paths on the

outerface belong to PAB or are in the neighbourhood of C. By Lemma 3.11, GQ has a

2-sided (int ∪ (uq, uq−1)) representation RQ with the respective corners and private region

for every interior face of GQ. If GQ has at most 2 vertices, then GQ consists of edge (A, a2)

only, and we use as representation R2 two parallel vertical segments a2 and A.

We combine RQ with a representation R2 of G2 that is different from the one used in the

previous cases; in particular we rotate corners. Construct a reverse 3-sided layout R2 of G2

with respect to corners C2 := ai, A2 := B and B2 := C. Rotate R2 by 180◦, and translate

it so that it is situated below RQ with a
RQ

i and aR

i in the same column. Then, extend

CR until it crosses u
RQ

q−1, . . . ,u
RQ

1 (after suitable lengthening), and then bottom-tangle

u
RQ

q−1, . . . ,u
RQ

1 rightwards. This creates intersections for all edges in path uq, uq−1, . . . , u1,

except for (uq, uq−1), which is either on the outerface (if q = 2) or had an intersection in

50

ai = u5 = uq

u3

u4

u2

A

B

C

GQ

G2

c2=u1

C

c2 = u1

u2 u3 u4

ai = u5 = uq A

B

R2

RQ

Figure 3.15: Case 2(b)1: C is incident to a chord, F = {(C, c2)}, and c2 6= A.

RQ. One easily verifies that the result is a 3-sided layout, and private regions can be found

for the new interior faces as shown in Figure 3.16.

Case 3: G has no chords incident to C and deg(C) ≥ 3

We will give explicit constructions for 3-sided and reverse 3-sided layout, and may hence

(after applying the reversal trick) assume that the special edge is (C, c2).

As in Section 3.2, let u1, . . . , uq be the neighbours of C and let j be minimal such that

uj has another neighbour on PAC . We again distinguish two sub-cases.

Case 3(a): j 6= 1. As in Section 3.2, define t1, . . . , tx, GR, GB, GQ, GL and G0. See

also Figure 3.8 on page 39. Recall that GR satisfies all conditions with respect to corners

AR := A, BR := B and CR ∈ {u1, u2}. Apply induction on GR and obtain an (int ∪ (u1, u2))

representation RR with respect to the corners of GR. We use as layout for RR the type

that we want for G, i.e., use a 3-sided/reverse 3-sided layout if we want G to have a

3-sided/reverse 3-sided representation.

For G0 and GQ, we use exactly the same representations R0 and RQ as in Section 3.2.

Combine now these three representations RR, RQ and R0 as described in Section 3.2,

Case 3(a); this can be done since the relevant curves uRR

2 , . . . ,uRR

t all end vertically in RR.

51

ai = u5 = uq

u3

u4

u2
A = c2 = u1

B

C

GQ

G2

C

ai = u5 = uq

u4

B A = c2 = u1

u2u3

R2

a2 = u2 = uq

A = c2 = u1

B

C

GQ

G2

C

a2 = u2 = uqB A = c2 = u1

R2

RQ

(a) (A, ai, C) is not a face

ai = u5 = uq

u3

u4

u2
A = c2 = u1

B

C

GQ

G2

C

ai = u5 = uq

u4

B A = c2 = u1

u2u3

R2

a2 = u2 = uq

A = c2 = u1

B

C

GQ

G2

C

a2 = u2 = uqB A = c2 = u1

R2

RQ

(b) (A, ai, C) is a face

Figure 3.16: Case 2(b)2: Construction when C is incident to a chord, c2 = A and

F = {(C, c2)}.

52

See also Figure 3.17. The only change occurs at curve C; in Section 3.2 this received a

bend and a downward segment, but here we omit this bend and segment and let C end

horizontally as desired.

One easily verifies that the curves intersect the bounding boxes as desired. The

constructed representations contain private regions for all interior faces of GR, GQ and G0

by induction. The remaining faces are of the form (C, ui, ui+1), 1 ≤ i < q, and (uj, wk, wk+1)

where wk and wk+1 are two consecutive neighbours of uj on the outerface of G0 or GQ.

Private regions for those faces are shown in Figure 3.17.

Case 3(b): j = 1, i.e., there exists a chord (bs−1, ci). In this case we cannot use the

above construction directly since we need to bend uj = u1 = bs−1 horizontally rightwards

to create intersections, but then it no longer extends vertically downwards as required for

bs−1. The simple construction described in Section 3.2, Case 3(b) does not apply either.

However, if we use a different vertex as uj (and argue carefully that the chord condition

holds), then the same construction works.

Refer to Figure 3.18. Recall that u1, . . . , uq are the neighbours of corner C in CW order

starting with bs−1 and ending with c2. We know that q ≥ 3 and u2, . . . , uq−1 are not on the

outerface. Now define j′ as follows: Let uj′ , j
′ > 1 be a neighbour of C that has at least one

neighbour on PCA other than C, and choose uj′ so that j′ is minimal while satisfying j′ > 1.

Such a j′ exists since uq−1 has another neighbour on PCA, and by q ≥ 3 we have q − 1 > 1.

Now, separate G as in the previous case, except use j′ in place of j. Thus, define t1, . . . , tx

to be the neighbours of uj′ on Pc2A, in order, and separate G into three graphs as follows:

• The right graph GR is bounded by (A, PAB. . . , B, PBu1. . . , u1, u2, . . . , uj′ , tx,
PtxA. . . , A).

• Let GB be the graph bounded by (uj′ , t1,
Pt1tx. . . , tx, uj′). Define GQ := GB − uj′ .

• Let GL be the graph bounded by (C, PCt1. . . , t1, uj′ , C). Define G0 := GL − {uj′ , C}.

Observe that the boundaries of all the graphs are simple cycles, and thus they are

W-triangulations. Select (AR := A,BR := B,CR := u2) to be the corners of GR and argue

the chord condition as follows:

53

t1 t2 t3

C

R0

RQ

RR
bs-1

B

Auj

uq=c2

u2

uj+1

uj+2

t4 = tx

t1 t2 t3
C

R0

RQ

RR

bs-1B Auj

uq=c2

u2

uj+1

uj+2

t4 = tx t1
C

R0

RR

bs-1B uj

uq=c2

u2

uj+1

uj+2

RQ

. . .

t1 t2 t3

C

R0

RQ

RR
bs-1

B

Auj

uq=c2

u2

uj+1

uj+2

t4 = tx

t1 t2 t3

C

R0

RQ

RR
bs-1

B

Auj

uq=c2

u2

uj+1

uj+2

t4 = tx

t1 t2 t3
C

R0

RQ

RR

bs-1B Auj

uq=c2

u2

uj+1

uj+2

t4 = tx t1
C

R0

RR

bs-1B uj

uq=c2

u2

uj+1

uj+2

RQ

. . .

t1 t2 t3

C

R0

RQ

RR
bs-1

B

Auj

uq=c2

u2

uj+1

uj+2

t4 = tx

Figure 3.17: Case 3(a): 3-sided and reverse 3-sided representation when deg(C) ≥ 3, there

is no chord incident to C, F = {(C, c2)}, and j > 1. The construction matches the graph

depicted in Figure 3.8a.

54

C A

bs-1 = u1

t1 t4=tx

G0

GR

uj'

uq = c2

u2

B

G1 G2

GQ

t2 t3

G3

Figure 3.18: Case 3(b): Splitting the graph when deg(C) ≥ 3, no chord is incident to C,

and j = 1.

• GR does not have any chords on PCRAR
as such chords would either contradict the

minimality of j′, or form a separating triangle with C (see Claim 3.12) and violate

the chord condition in G.

• GR does not have any chords on PARBR
= PAB.

• GR does not have any chords on PBbs−1
as it is a sub-path of PBC and they would

violate the chord condition in G. It also does not have any chords in the form

(CR = u2, bℓ), 1 ≤ ℓ < s − 1 as they would have to intersect the chord (bs−1, ci),

violating the planarity of G. Hence, GR does not have any chords on PCRAR
.

• Notice in particular that the chord (u1, ci) of GR is not a violation of the chord

condition since we chose u2 as a corner.

Hence, we can obtain a representation RR of GR with 3-sided or reverse 3-sided layout

and special edge (u1 = bs−1, u2). For graphs GQ and G0 the corners are chosen, the chord

condition is verified, and the representations are obtained exactly as in Case 3(a). Since

the special edge of GR is (u1, u2) as before, curves u
RR

1 and uRR

2 are situated precisely as in

Case 3(a), and we merge representations and find private regions as before. See Figure 3.17.

55

C

B

A

Θ

Figure 3.19: Completing a 3-sided (int ∪ (B,C)) representation by adding intersections for

(A,B) and (A,C).

This ends the description of the construction in all cases, and hence proves Lemma 3.14.

3.4 Extension from 4-connected triangulations to all

planar graphs

In this section, we prove Theorem 3.1, i.e., we create B2-VPG representations for all

planar graphs. Observe that Lemma 3.14 essentially proves the theorem for 4-connected

triangulations. As in [31] we extend the claim to hold for all triangulations by induction on

the number of separating triangles.

Theorem 3.15. Let G be a triangulation with outerface (A,B,C). G has a 1-string

B2-VPG representation with a chair-shaped private region for every interior face f of G.

Proof. Our approach is exactly the same as in [31], except that we must be careful not to

add too many bends when merging subgraphs at separating triangles, and hence must use

3-sided layouts. Formally, we proceed by induction on the number of separating triangles.

In the base case, G has no separating triangle, i.e., it is 4-connected. As the outerface is

a triangle, G clearly satisfies the chord condition. Thus, by Lemma 3.14, it has a 3-sided

(int ∪ (B,C)) representation R with private region for every face. R has an intersection for

56

every edge except for (A,B) and (A,C). These intersections can be created by tangling

B,A and C,A suitably (see Figure 3.19). Recall that A initially did not have any bends,

so it has 2 bends in the constructed representation of G. The existence of private regions is

guaranteed by Lemma 3.14.

Now assume for the induction step that G has k+1 separating triangles. Let ∆ = (a, b, c)

be an inclusion-wise minimal separating triangle of G. Let G2 be the graph induced by

the vertices inside ∆, and let G1 = G − G2. Graph G1 has k separating triangles. By

induction, G1 has a representation R1 with a chair-shaped private region for every interior

face f . Let Φ be the private region for face ∆. Permute a, b, c, if needed, so that the naming

corresponds to the one needed for the private region and, in particular, the vertical segment

of c intersects the private region of ∆ as depicted in Figures 3.20 and 3.21. Chalopin et al.

showed the following:

Observation 3.16 (Chalopin et al. [31]). Subgraph G2 is either an isolated vertex, or a

W-triangulation with corners (A,B,C) such that the vertices on PAB are adjacent to b, the

vertices on PBC are adjacent to c, and the vertices on PCA are adjacent to a. Furthermore,

G2 satisfies the chord condition with respect to these corners.

We can hence merge G2 as follows:

Case 1: G2 is a single vertex v. Represent v by inserting into Φ an orthogonal curve

v with 2 bends that intersects a,b and c. The construction, together with private regions

for the newly created faces (a, b, v), (a, c, v) and (b, c, v), is shown in Figure 3.20.

Case 2: G2 is a W-triangulation. Recall that G2 satisfies the chord condition with

respect to corners (A,B,C). Apply Lemma 3.14 to construct a 3-sided (int ∪ (C, bs−1))

representation R2 of G2 with respect to the corners of G2. Let us assume that (after possible

rotation) Φ has the orientation shown in Figure 3.21; if it had the symmetric orientation

then we would do a similar construction using a reverse 3-sided representation of G2. Place

R2 inside Φ as shown in Figure 3.21. Stretch the curves representing vertices on PCA,

PAB and PBbs−1
downwards, upwards and leftwards respectively so that they intersect a,b

and c. Top-tangle leftwards the curves A = a1, a2, . . . , ar = B. Left-tangle downwards

the curves B = b1,b2, . . . ,bs−1 and bend and stretch C downwards so that it intersects

57

a b

c

v

(a)

R1

c

v

b

a

(b)

Figure 3.20: The construction for a separating triangle enclosing one vertex.

a. Bottom-tangle leftwards the curves C = c1, . . . , ct = A. It is easy to verify that the

construction creates intersections for all the edges between vertices of ∆ and the outerface

of G2. The tangling operation then creates intersections for all the outerface edges of G2

except edge (C, bs−1), which is already represented in R2.

Every curve that receives a new bend represents a vertex on the outerface of G2, which

means that it initially had at most 1 bend. Curve A is the only curve that receives 2 new

bends, but this is allowed as A does not have any bends in R2. Hence, the number of bends

for every curve does not exceed 2.

Private regions for faces formed by vertices a, b, c and vertices on the outerface of G2

can be found as shown in Figure 3.21.

With Theorem 3.15 in hand, we can show our main result: every planar graph has a

1-string B2-VPG representation.

Proof of Theorem 3.1. If G is a planar triangulated graph, then the claim holds by Theo-

rem 3.15. To handle an arbitrary planar graph, repeatedly stellate the graph (recall that

58

a b

c

A

BC

G2

(a)

R1

c
b

a

C

A

B

R2

(b)

Figure 3.21: The construction for a separating triangle enclosing a W-triangulation.

this means inserting into each non-triangular face a new vertex connected to all vertices

of the face). It is easily shown that one stellation makes the graph connected, a second

one makes it 2-connected, and a third one makes it 3-connected and triangulated. Thus

after 3 stellations we have a 3-connected triangulated graph G′ such that G is an induced

subgraph of G′. Apply Theorem 3.15 to construct a 1-string B2-VPG representation R′ of

G′ (with the three outerface vertices chosen as corners). By removing curves representing

vertices that are not in G, we obtain a 1-string B2-VPG representation of G.

3.5 Example

Here we provide an example of constructing an (int ∪ (18, 16)) 1-string B2-VPG repre-

sentation R of the W-triangulation shown in Figure 3.22. We use numbers and colors to

distinguish vertices. We use letters to indicate special vertices such as corners; note that

the designation as such a corner may change as the subgraph gets divided further. The

special edge is marked with hatches.

One can verify that the graph with the chosen corners (1,4,18) satisfies the chord

59

condition. Vertex C has degree 4, but it is not incident to a chord, so one applies the

construction from Section 3.3. Finding vertex uj = 6, we can see that j > 1, so Case 3(a)

applies. Figure 3.22 shows the graphs GR, GQ and G0, and how to construct R from their

representations RR, RQ and R0.

The construction of RQ is shown in Figure 3.23. The representation should have a

2-sided layout and no special edge. Graph GQ decomposes into three subgraphs G1, G2, G3.

Their 2-sided representations are found separately (for G1 this involves recursing twice

more) and combined as described in the proof of Claim 3.13.

The construction of RR is shown in Figure 3.24 (decomposition of GR) and 3.25

(combining the representations). Representation RR is supposed to be 3-sided. We first

apply Case 1 (Section 3.3) twice, since corner C has degree 2. Then corner C becomes

incident to a chord, so we are in Case 2, and use sub-case Case 2(a) (Section 3.3) since the

special edge is (C, bs−1 = B). This case calls for a 3-sided representation of a G2 (which is a

triangle in this case, so the base case applies). It also calls for a 2-sided representation of G1

with special edge (C,A = c2). This is Case 2 (Section 3.2) and we need to apply the reversal

trick—we flip the graph and relabel the corners. After obtaining the representation, it must

be flipped horizontally in order to undo the reversal. The construction decomposes the

graph further, using Case 2 repeatedly, which breaks the graphs into elementary triangles.

Their 2-sided representations are obtained using the base case and composed as stipulated

by the construction.

Figure 3.26 shows the complete 3-sided (int ∪ (18, 16)) representation of the graph.

3.6 Conclusions

We showed that every planar graph has a 1-string B2-VPG representation, i.e., a represen-

tation as an intersection graph of strings where strings cross at most once and each string

is orthogonal with at most two bends.

Following the steps of our proof, it is not hard to see that our representation can be

found in linear time, since the only non-local operation is to test whether a vertex has a

60

t4=tx

C := 5

A:=1

B Case 3(a)

c2 := 6

RR

RQ

R0

C

B

A
u2=uj

u1=bs-1

t1 t2 t3 t4=tx

GR

GQ

G0

c2

u1=bs-1:=5

c
2 := 16

t
1 := 13

t
2 := 11

t
3 := 10

t
4 =t

x := 7

C:=18
A:=1

B:=4

u2=uj :=6

B1:=13

A1=B2:=14

A2=B3:=10

A3:=7

C1=12

A0=16 B0=B1:=13

C0=17

5

16 13 11 10 718 1

4

6

2

3

9812

14
1517

Figure 3.22: Illustration of the example. The goal is to find an (int ∪ (18, 16)) 1-string

B2-VPG representation of the W-triangulation shown on top, using corners (1,4,18).

61

B2

A2

C1

A3

C1:=12B1:=13 A1:=11

ai:=15

C:=12B:=13

A:=14

t1=B0=B1 t2=A1=B2

t3=A2=B3C1

A3=t4=tx

B2:=11 A2:=10 B3:=10 A3:=7

A:=12 B:=11

C:=15

C:=12B:=13

A:=15

ai:=14

B:=15
C:=14

A:=12 C AB
A

B C

C

aiB

A
A

B C

A1

ai

C1

B1

B3 A3B2 A2

A1B1

B3

180°

180°

Figure 3.23: Illustration of the example: Finding RQ (top right).

62

C:=5

A:=1

B:=4

C:=7

A:=3

B:=4
C:=3

A:=7 B:=1

Case 1, 3-sided

Case 1, 3-sided

Case 2, 3-sided

Case 3(a)

c2:=6

Case 2, 2-sided,

reversing trick

A:=1

C:=3

B:=7

ai:=8

A:=8

A:=3

B:=1 C:=8

Case 2, 2-sided

Case 2, 2-sided

A:=1

B:=3

C:=8

ai:=2

Case 2, 2-sided,

reversing trick

A:=2

B:=3

C:=8 A:=8 B:=1

C:=2

A:=1 B:=8

C:=2
Case 2, 2-sided,

reversing trick

Case 2, 2-sided

ai:=9

B:=8

C:=2

A:=9

A:=2

B:=1 C:=9

B:=4

C:=6

A:=1

B:=4

C:=7 c2:=8 A:=1

C:=3

B:=7

ai:=2

ai:=9

Figure 3.24: Illustration of the example: Decomposing graph GR.

63

Case 1, 3-sided

Case 1, 3-sided

Case 2, 3-sided

Case 2, 2-sided,

reversing trick

Case 2, 2-sided

Case 2, 2-sided

Case 2, 2-sided,

reversing trick

Case 2, 2-sided,

reversing trick

Case 2(a), 2-sided

AB C

ACB

A

ai

B

C

Aai

B

C

CB A

AB C

C

B

ai

A

C

A

B

C

B

ai

A

C

A

B

A

B

C

B

B

A
C

180°

flip

180°

180°

flip

flip

C

A

180°

C

B

A

C:=5

A:=1

B:=4 Case 3(a)

c2:=6

Figure 3.25: Illustration of the example: Composing representation RR.

64

B

RR

RQ

R0

C

Au2=uj

u1=bs-1

t1 t2 t3 t4=txc2

5

16 13 11 10 718 1

4

6

2

3

9812

14
1517

Figure 3.26: Illustration of the example: Complete 3-sided (int ∪ (18, 16)) representation.

65

neighbour on the outerface. This can be tested by marking such neighbours whenever they

become part of the outerface. Any vertex that becomes part of the outerface remains on

the outerface throughout later steps, so such a marking happens only once per vertex. So

this takes linear time overall.

The representation constructed in this paper uses curves of 8 possible shapes for planar

graphs. For 4-connected planar graphs, the shapes that have at most one vertical segment

suffice. A natural question is whether one can restrict the number of shapes required to

represent all planar graphs, e.g., can we use only shapes ⑤❞, ❤⑤❧, ❞⑤ or ❧⑤❤ (those are the shape

that suffice for 4-connected planar graphs) for all planar graphs?3

3Note that a very recent result of Gonçalves et al. [55] resolves this question positively. See also

Section 8.2.

66

Chapter 4

Approximation Algorithms for

B1-VPG and B2-VPG Graphs

In the previous chapter, we showed that one can construct 1-string B2-VPG representations

for planar graphs, and that a subset of such curves is sufficient to represent planar graphs

that are 4-connected. We would now like to show that such representations are useful from

an algorithmic point of view. This chapter is concerned with partitioning string graphs (and

other classes of intersection graphs) into subgraphs that have nice properties, such as being

outer-string graphs or permutation graphs (defined formally below). We can then use such

a partition to obtain approximation algorithms for some graph problems, such as weighted

independent set, clique, clique cover and colouring. More specifically, “partitioning” in

this chapter usually means a vertex partition, i.e., we split the vertices of the graph as

V = V1 ∪ · · · ∪ Vk such that the subgraph induced by each Vi has nice properties. In one

case we also do an edge-partition where we partition E = E1 ∪ E2 and then work on the

two subgraphs Gi = (V,Ei), for i = 1, 2.

Our research was inspired by a paper by Lahiri et al. [71] (a similar technique was

used earlier by Agarwal, van Kreveld and Suri in 1988 [2]). They gave an algorithm to

approximate the maximum (unweighted) independent set in a B1-VPG graph within a

factor of 4 log2 n (log in this thesis denotes log2). We greatly expand on their approach as

follows. First, rather than solving maximum independent set directly, we instead split such

67

a B1-VPG graph into subgraphs. This allows us to approximate not just independent set,

but more generally any hereditary graph problem that is solvable in such graphs.

Secondly, rather than using co-comparability graphs for splitting as Lahiri et al. did, we

use outer-string graphs. This allows us to stop the splitting earlier, reducing the approxi-

mation factor from 4 log2 n to 2 log n, and to give an algorithm for weighted independent

set (wIS).

Finally, we allow much more general shapes, not just curves, for our intersection graphs.

For splitting into outer-string graphs, we can allow any shape that can be described as

the union of one vertical and any number of horizontal segments (we call such intersection

graphs “single-vertical”). Our results yield a 2 log n-approximation algorithm for wIS in

such graphs, which include B1-VPG graphs, and a 4 log n-approximation for wIS in B2-VPG

graphs.

In the second part of the chapter, we consider splitting the graph such that the resulting

subgraphs are co-comparability graphs. This type of problem was first considered by

Keil and Stewart [62], who showed that so-called subtree filament graphs can be vertex-

partitioned into O(log n) co-comparability graphs. The work of Lahiri et al. [71] can be

seen as proving that every B1-VPG graph can be vertex-partitioned into O(log2 n) co-

comparability graphs. We focus here on the bigger class of B2-VPG graphs, and show that

they can be vertex-partitioned into O(log3 n) co-comparability graphs. Moreover, these

co-comparability graphs have poset dimension 3, and if the B2-VPG representation was

1-string, then they are permutation graphs. This leads to better approximation algorithms

for clique, colouring and clique cover for B2-VPG graphs.

The results of this chapter will appear in [15].

4.1 Decomposing into outer-string graphs

We argue in this section how to split a graph into outer-string graphs if it has an intersection

representation of a special form. A single-vertical object is a connected set S ⊂ R
2 of the

form S = s0 ∪ s1 ∪ · · · ∪ sk, where s0 is a vertical segment and s1, . . . , sk are horizontal

68

segments, for some finite k. We consider a horizontal segment to be a single-vertical object

as well, by attaching a zero-length vertical segment at one of its endpoints. Given a number

of single-vertical objects S1, . . . , Sn, we define the intersection graph of them in the usual

way, by defining one vertex per object and adding an edge whenever objects have at least one

point in common. For the results in this section, it does not matter whether such a common

point is a true crossing of segments; the approach works even if objects touch or overlap.

We call such a representation a single-vertical representation and the graph a single-vertical

intersection graph (see Figure 4.2 on page 72 for an example). The x-coordinate of one

single-vertical object is defined to be the x-coordinate of the (unique) vertical segment. We

will prove the following:

Theorem 4.1. Let G be a single-vertical intersection graph. Then the vertices of G can be

partitioned into at most max{1, 2 log n}sets1 such that the subgraph induced by each is an

outer-string graph.

Our proof of Theorem 4.1 uses a splitting technique implicit in the recursive approxi-

mation algorithm of Lahiri et al. [71]. Let R be a single-vertical representation on G and

let S be an ordered list of the x-coordinates of all the objects in R. We define the median

m of R as the smallest number such that at most |S|
2

x-coordinates in S are smaller than

m and at most |S|
2

x-coordinates in S are bigger than m. (If |S| is odd then m is always

the x-coordinate of at least one object.) Now split R into three sets: The middle set M

of objects that intersect the vertical line m with x-coordinate m; the left set L of objects

whose x-coordinates are smaller than m and that do not belong to M , and the right set R

of objects whose x-coordinates are bigger than m and that do not belong to M . Split M

further into ML = { c | the x-coordinate of c is less than m} and MR = M \ML. See also

Figure 4.1.

Lemma 4.2. The subgraph induced by the objects in ML is outer-string.

Proof. All the objects in ML intersect curve m. Since all the x-coordinates of those objects

are smaller than m, all the intersections between two objects in ML occur left of m. For

each c ∈ ML, create a closed curve that traces around the part of c that is left of m(by

1This bound is not tight; a more careful analysis shows that we get at most max{1, 2⌈log n⌉ − 2} sets.

69

ML MR

m

L R

Figure 4.1: The split of a representation into L, M = ML ∪MR and R.

tracing, we formally mean taking the boundary of a sufficiently small ǫ-neighbourhood of

c that is left of mtogether with the segment of mthat belongs to this ǫ-neighbourhood).

Breaking the closed trace-curve at one of the attachments to m produces an open curve.

Doing so for every object, one obtains an outer-string representation where all curves attach

to m from one side and that induces the same graph as ML.

A similar proof shows that the graph induced by objects in MR is an outer-string graph.

Now we can prove our main result:

Proof of Theorem 4.1. Let G be a graph with a single-vertical representation. We proceed

by induction on the number of vertices n in G. If n ≤ 2, then the graph is outer-string and

we are done, so assume n ≥ 3, which implies that log n ≥ 3
2
. By Lemma 4.2, both ML and

MR individually induce an outer-string graph. Applying induction, we get at most

max{1, 2 log |L|} ≤ max{1, 2 log(n/2)} = max{1, 2 log n− 2} = 2 log n− 2

outer-string subgraphs for L, and similarly at most 2 log n− 2 outer-string subgraphs for

R. Since the objects in L and R are separated by the vertical line m, there are no edges

70

between the corresponding vertices. Thus any outer-string subgraph defined by L can be

combined with any outer-string subgraph defined by R to give one outer-string graph. We

hence obtain 2 log n− 2 outer-string graphs from recursing into L and R. Adding to this

the two outer-string graphs defined by ML and MR gives the result.

Our proof is constructive, and finds the partition within O(log n) recursions. In each

recursion we must find the median m and then determine which objects intersect the line

m. If we pre-sort three lists of the objects (once by x-coordinate of the vertical segment,

once by leftmost x-coordinate, and once by rightmost x-coordinate), and pass these lists

along as parameters, then each recursion can be done in O(n) time, without linear-time

median-finding. The pre-sorting takes O(N + n log n) time, where N is the total number

of segments in the representation. Hence the run-time to find the partition into O(log n)

outer-string graphs is O(N + n log n).

4.1.1 What graphs are single-vertical?

The above results were for single-vertical graphs. However, the main focus of this chapter

is Bk-VPG graphs, for k ≤ 2. Clearly B1-VPG graphs are single-vertical by definition. It is

not obvious whether all B2-VPG graphs are single-vertical graphs. Note that a B2-VPG

representation may not be a single-vertical representation—it may have curves with two

horizontal segments as well as curves with two vertical segments, so no rotation of the

representation can give a single-vertical representation. However, we can still handle them

by doubling the number of graphs into which we split.

Lemma 4.3. Let G be a B2-VPG graph. Then the vertices of G can be partitioned into 2

sets such that the subgraph induced by each is a single-vertical B2-VPG graph.

Proof. Fix a B2-VPG representation of G. Let Vv be the vertices that have at most one

vertical segment in their curve, and Vh be the remaining vertices. Since every curve has

at most three segments, and all curves in Vh have at least two vertical segments, each of

them has at most one horizontal segment. Clearly Vv induces a single-vertical graph. Vh

also induces a single-vertical graph, because we can rotate all curves by 90◦ and then have

at most one vertical segment per curve.

71

(a) A disk graph. The graph corresponds

to the graph in Figure 2.1.

(b) A single-vertical representation ob-

tained from a disk graph.

(c) A single-vertical representation obtained

from a boxicity-2 graph.

Figure 4.2: An example of a single-vertical representation.

72

Combining this with Theorem 4.1, we immediately obtain:

Corollary 4.4. Let G be a B2-VPG graph. Then the vertices of G can be partitioned into

at most max{1, 4 log n} sets such that the subgraph induced by each is an outer-string graph.

In particular, by Theorem 3.1, all planar graphs are B2-VPG graphs and Corollary 4.4

applies to them. A number of graph classes can also be shown to be subclasses of single-

vertical graphs. In particular, this includes boxicity-2 graphs (intersection graphs of

axis-aligned rectangles in the plane) and disk graphs (intersection graphs of circles in

the plane)—we can replace these shapes (rectangles or disks) by a vertical segment and

sufficiently many horizontal segments to cover at east one common point for each intersecting

point of shapes (see Figure 4.2). Finally, there exist a generalization of planar graph called

1-planar graphs. These also turn out to be single-vertical graphs under some conditions on

crossing edges. We return to this in Section 7.3.

4.2 Decomposing into co-comparability graphs

We now show that by doing further splits, we can actually decompose B2-VPG graphs into

so-called co-comparability graphs of poset dimension 3 (defined formally below). While we

require more subgraphs for such a split, the advantage is that numerous problems can be

solved in polynomial time for co-comparability graphs, while for outer-string graphs we

know of no problem other than weighted independent set that is poly-time solvable.

We first give an outline of the approach. Given a B2-VPG graph, we first use Lemma 4.3

to split it into two single-vertical B2-VPG graphs. Given a single-vertical B2-VPG graph,

we next use a technique much like the one of Theorem 4.1 to split it into log n single-vertical

B2-VPG graphs that are “centered” in some sense. Any such graph can easily be edge-

partitioned into two B1-VPG graphs that are “grounded” in some sense. We then apply the

technique of Theorem 4.1 again (but in the other direction) to split a grounded B1-VPG

graph into log n B1-VPG graphs that are “cornered” in some sense. The latter graphs can be

shown to be permutation graphs. This gives the result after arguing that the edge-partition

can be un-done at the cost of combining permutation graphs into co-comparability graphs.

73

π1

π2

π3
(a) (b) (c) (d)

Figure 4.3: (a) A graph that is simultaneously (b) a permutation graph; (c) a co-

comparability graph of poset dimension 3; and (d) a cornered B1-VPG graph.

For this section, we return to the usual assumption that any intersection of strings is a

true intersection, i.e., neither a touching nor an overlap. Recall that by Lemma 2.4, we

may hence assume that x-coordinates and y-coordinates of segments are distinct. We may

also assume that every vertex is represented by an object with exactly 3 segments—we can

achieve this by attaching very short segments that intersect nothing.

4.2.1 Co-comparability graphs

We start by defining the graph classes that we use. A graph G with vertices {1, . . . , n} is

called a permutation graph if there exist two permutations π1, π2 of {1, . . . , n} such that (i, j)

is an edge of G if and only if π1 lists i, j in the opposite order as π2 does. Put differently, if

we place π1(1), . . . , π1(n) at points along a horizontal line, and π2(1), . . . , π2(n) at points

along a parallel horizontal line, and use the line segment (π1(i), π2(i)) to represent vertex i,

then the graph is the intersection graph of these segments. See Figure 4.3(b).

A co-comparability graph G is a graph whose complement can be directed in an acyclic

transitive fashion. Rather than defining these terms, we describe here only the restricted type

of co-comparability graphs that we are interested in. A graph G with vertices {1, . . . , n} is

called a co-comparability graph of poset dimension k if there exist k permutations π1, . . . , πk

such that (i, j) is an edge if and only if there are two permutations that list i and j in

opposite order. See Figure 4.3(c) and refer to Golumbic et al. [54] for more on these

characterizations. Note that a permutation graph is a co-comparability graph of poset

dimension 2.

74

4.2.2 Cornered B1-VPG graphs

A B1-VPG representation is called cornered if there exists a horizontal and a vertical ray

emanating from the same point such that any curve of the representation intersects both

rays. See Figure 4.3(d) for an example.

Lemma 4.5. If G has a cornered B1-VPG representation, say with respect to rays r1 and

r2, then G is a permutation graph. Further, the two permutations defining G are exactly

the two orders in which vertex-curves intersect r1 and r2.

Proof. Since the curves have only one bend, the intersections with r1 and r2 determine

the curve of each vertex. In particular, two curves intersect if and only if the two orders

along r1 and r2 are not the same, which is to say, if their orders are different in the two

permutations of the vertices defined by the orders along the rays. Hence using these orders

shows that G is a permutation graph.

4.2.3 From grounded to cornered

We call a B1-VPG representation grounded2 if there exists a horizontal line segment ℓH that

intersects all curves, and has all horizontal segments of all curves strictly above it. See also

Figure 4.4. We now show how to split a grounded B1-VPG representation into cornered

ones. It will be important later that not only can we do such a split, but we know how the

curves intersect ℓH afterwards. More precisely, the curves in the resulting representations

may not be identical to the ones we started with, but they are modified only in such a way

that the intersections points of curves along ℓH is unchanged.

Lemma 4.6. Let R be a B1-VPG representation that is grounded with respect to segment

ℓH . Then R can be partitioned into at most max{1, 2 log n} sets R1, . . . , RK such that each

set Ri is cornered after upward translation and segment-extension of some of its curves.

Proof. A single curve with one bend is always cornered, so the claim is easily shown for

n ≤ 4 where max{1, 2 log n} ≥ n. For n ≥ 5, it will be helpful to split R first into two sets,

2The term “grounded” has been used for other types of intersection graphs previously, see e.g. [26, 27].

75

m

ℓh
(a)

GL GR

m

ℓh
(b)

Figure 4.4: An illustration for the proof of Lemma 4.6. (a) Splitting a cornered B1-VPG

graph. The dotted curves form a cornered B1-VPG graph and the algorithm recurses in

the solid curved. (b) Combining a graph GL with a graph GR found in the recursive step

(the bold curves in (a)) so that the result is a cornered B1-VPG graph.

those curves that form ⑤❤ and those that form ❤⑤ (no other shapes can exist in a grounded

B1-VPG representation). The result follows if we show the following:

Claim. A grounded B1-VPG representation that consists only of shapes ⑤❤ can be split into

log n many cornered B1-VPG representations.

So assume that R consists of only ⑤❤’s. We apply essentially the same idea as in

Theorem 4.1. Let again m be the vertical line along the median of x-coordinates of vertical

segments of curves. Let M be all those curves that intersect m. Let m’ be the vertical

line just to the right of m. After extending horizontal segments of M a bit (if needed) all

curves in M intersect m’, and none of them has the vertical segment on m’. Since curves

are ⑤❤’s, any curve in M intersects ℓH to the left of m’, and intersects m’ above ℓH . Hence

taking the two rays along ℓH and m’ emanating from their common point shows that M is

cornered.

We then recurse both in the subgraph L of vertices whose curves lie entirely left of m

and the subgraph R of vertices whose curves lie entirely right of m. Each of them is split

recursively into at most max{1, log(n/2)} = log n − 1 subgraphs that are cornered. We

currently have twice as many subgraphs as required, so we must show how to combine two

such subgraphs GL and GR (of vertices from L and R) such that they are cornered while

76

modifying curves only in the permitted way.

Translate curves of GL upward such that the lowest horizontal segment of GL is above

the highest horizontal segment of GR. Extend the vertical segments of GL so that they

again intersect ℓH . Extend horizontal segments of both GL and GR rightward until they

all intersect one vertical line segment. See also Figure 4.4b. The resulting representation

satisfies all conditions.

Since we obtain at most log n−1 such cornered representations from the curves in R∪L,

we can add M to it and the result follows.

Corollary 4.7. Let G be a graph with a grounded B1-VPG representation. Then the

vertices of G can be partitioned into at most max{1, 2 log n} sets such that the subgraph

induced by each is a permutation graph.

4.2.4 From centered to grounded

We now switch to VPG representations with 2 bends, but currently only allow those with

a single vertical segment per curve. So let R be a single-vertical B2-VPG representation.

We call R centered if there exists a horizontal line segment ℓH that intersects the vertical

segment of all curves in its interior. Given such a representation, we can cut each curve

apart at the intersection point with ℓH . Then the parts above ℓH form a grounded B1-VPG

representation, and the parts below form (after a 180◦ rotation) also a grounded B1-VPG

representation. Note that this split corresponds to splitting the edges into E = E1 ∪ E2,

depending on whether the intersection for each edge occurs above or below ℓH . If curves

may intersect repeatedly, then an edge may be in both sets. See Figure 4.5 for an example.

With this, we can now split into co-comparability graphs.

Lemma 4.8. Let G be a graph with a single-vertical centered B2-VPG representation. Then

the vertices of G can be partitioned into at most max{1, 4 log2 n} sets such that the subgraph

induced by each is a co-comparability graph of poset dimension 3.

Proof. The claim clearly holds for n ≤ 4, so assume n ≥ 5. Let ℓH be the horizontal

segment along which the representation is centered. Split the edges into E = E1 ∪ E2 as

77

ℓh

Figure 4.5: Splitting a single-vertical B2-VPG representation into two grounded B1-VPG

representations.

above, and let R1 and R2 be the resulting grounded B1-VPG representations, which have

the same order of vertical intersections along ℓH . Split R1 into K ≤ 2 log n sets of curves

R1
1, . . . , R

K
1 , each of which forms a cornered B1-VPG representation that uses the same

order of intersections along ℓH . Similarly split R2 into K ′ ≤ 2 log n sets R1
2, . . . , R

K′

2 of

cornered B1-VPG representations.

Now define Ri,j to be all those curves r in R where the part of r above ℓH belongs to Ri
1

and the part below belongs to Rj
2. This gives K ·K ′ ≤ 4 log2 n sets of curves. Consider one

such set Ri,j. The parts of curves in Ri,j that were above ℓH are cornered at ℓH and some

vertical upward ray, hence define a permutation π1 along the vertical ray and π2 along ℓH .

Similarly the parts of curves below ℓH define two permutations, say π′
2 along ℓH and π3 along

some vertical downward ray. But the split into cornered B1-VPG representation ensured

that the intersections along ℓH was not changed, so π2 = π′
2. The three permutations

π1, π2, π3 together hence define a co-comparability graph of poset dimension 3 as desired.

We can do slightly better if the representation is additionally 1-string.

78

Corollary 4.9. Let G be a graph with a single-vertical centered 1-string B2-VPG represen-

tation. Then the vertices of G can be partitioned into at most max{1, 4 log2 n} sets such

that the subgraph induced by each is a permutation graph.

Proof. The split is exactly the same as in Lemma 4.8. Consider one of the subgraphs Gi

and the permutations π1, π2, π3 that came with it, where π2 is the permutation of curves

along the centering line ℓH . We claim that Gi is a permutation graph, using π1, π3 as the

two permutations. Clearly if (u, v) is not an edge of Gi, then all of π1, π2, π3 list u and v in

the same order. If (u, v) is an edge of Gi, then two of π1, π2, π3 list u, v in opposite order.

We claim that π1 and π3 list u, v in opposite order. For if not, say u comes before v in

both π1 and π3, then (to represent edge (u, v)) we must have u after v in π2. But then the

curves of u and v intersect both above and below ℓH , contradicting that we have a 1-string

representation. So the two permutations π1, π3 define graph Gi.

4.2.5 Making single-vertical B2-VPG representations centered

Lemma 4.10. Let G be a graph with a single-vertical B2-VPG representation. Then the

vertices of G can be partitioned into at most max{1, log n} sets such that the subgraph

induced by each has a single-vertical centered B2-VPG representation.

Proof. The approach is quite similar to the one in Theorem 4.1, but uses a horizontal split

and a different median. The claim is easy to show for n ≤ 3, so assume n ≥ 4. Recall that

there are n vertical segments, hence 2n endpoints of such segments. We assumed that no two

horizontal segments have the same y-coordinate, so the 2n endpoints of vertical segments

give 2n distinct y-coordinates. Let m be a value such that exactly n of these endpoints are

strictly below m and exactly n are strictly above m, and let m be the horizontal line with

y-coordinate m.

Let M be the curves that are intersected by m; clearly they form a single-vertical

centered B2-VPG representation. Let B be all those curves whose vertical segment (and

hence the entire curve) is completely below m. Each such curve contributes two endpoints

of vertical segments, hence |B| ≤ n/2 by choice of m. Recursively split B into at most

79

max{1, log(n/2)} = log n − 1 sets, and likewise split the curves U above m into at most

log n− 1 sets.

Each chosen subset RB of B is centered, as is each subset RU of U chosen in the recursive

step matching RB. Since RB uses curves below m while RU uses curves above, there are

no crossings between these curves. We can hence translate the curves of RB horizontally

and vertically so that they are centered with the same horizontal line as RU . Therefore

RB ∪ RU has a centered single-vertical B2-VPG representation. Repeating this for all of

B ∪U gives log n− 1 centered single-vertical B2-VPG representations, to which we can add

the one defined by M .

4.2.6 Putting it all together

We summarize all these results in our main result about splits into co-comparability graphs:

Theorem 4.11. Let G be a B2-VPG graph. Then the vertices of G can be partitioned into

at most max{1, 8 log3 n} sets such that the subgraph induced by each is a co-comparability

graph of poset dimension 3. If G is a 1-string B2-VPG graph, then the subgraphs are

permutation graphs.

Proof. The claim is trivial for n = 1 and holds for n = 2, 3 since then n ≤ 8 log3 n, so

assume n ≥ 4. Fix a B2-VPG representation R. First split R into two single-vertical

B2-VPG representations as in Lemma 4.3. Split each of them into log n single-vertical

centered B2-VPG representations using Lemma 4.10, for a total of at most 2 log n sets of

curves. Split each of them into 4 log2 n co-comparability graphs (or permutation graphs if

the representation was 1-string) using Lemma 4.8 or Corollary 4.9. The result follows.

We can do better for B1-VPG graphs. The subgraphs obtained in the result below are

the same ones that were used implicitly in the 4 log2 n-approximation algorithm given by

Lahiri et al. [71].

Theorem 4.12. Let G be a B1-VPG graph. Then the vertices of G can be partitioned into

at most max{1, 4 log2 n} sets such that the subgraph induced by each is a permutation graph.

80

Proof. The claim is trivial if n = 1, so assume n > 1. Fix a B1-VPG representation R,

and split it into log n single-vertical centered B1-VPG representations using Lemma 4.10.

Split each of them into two centered B1-VPG representations, one of those curves with the

horizontal segment above the centering line, and one with the rest. Each of the resulting

2 log n centered B1-VPG representations is now grounded (possibly after a 180◦ rotation).

We can split each of them into 2 log n permutation graphs using Corollary 4.7, for a total

of 4 log2 n permutation graphs.

4.3 Applications

We now show how Theorem 4.1 and 4.14 can be used for improved approximation algorithms

for B2-VPG graphs. The techniques used here are virtually the same as the one by Keil

and Stewart [62] and require two things. First, the problem considered needs to be solvable

on the special graph class (such as outer-string graphs or co-comparability graphs or

permutation graphs) that we use. Second, the problem must be hereditary in the sense that

a solution in a graph implies a solution in an induced subgraph, and solutions in induced

subgraphs can be used to obtain a decent solution in the original graph.

We demonstrate this in detail using weighted independent set, which Keil et al. showed

to be polynomial-time solvable in outer-string graphs [63, 61]. Recall that this is the

problem: given a graph with vertex-weights, find a subset I of vertices that has no edges

between them such that w(I) :=
∑

v∈I w(v) is maximized, where w(v) denotes the weight of

vertex v. The run-time to solve weighted independent set in outer-string graphs is O(N3),

where N is the number of segments in the given outer-string representation.

Theorem 4.13. There exists a (2 log n)-approximation algorithm for weighted independent

set on single-vertical graphs with run-time O(N3), where N is the total number of segments

used among all single-vertical objects.

Proof. If n = 1, then the unique vertex is the maximum weight independent set. Else, use

Theorem 4.1 to partition the vertices of the given graph G into at most 2 log n sets, each

of which induces an outer-string graph, and find the largest weighted independent set in

81

each applying the algorithm of Keil et al. If Gi had an outer-string representation with

Ni segments in total, then this takes time O(
∑

N3
i) time. Note that if a single-vertical

object consisted of one vertical and ℓ horizontal segments, then we can trace around it

with a curve with O(ℓ) segments. Hence all curves together have O(N) segments and the

total run-time is O(N3) which dominates the O(N + n log n) time needed to partition the

vertices.

Let I∗i be the maximum-weight independent set in Gi, and return as set I the set in

I∗1 , . . . , I
∗
k that has the maximum weight. To argue the approximation-factor, let I∗ be the

maximum-weight independent set of G, and define Ii to be all those vertices of I∗ whose

representation belongs to Ri, for i = 1, . . . , k. Clearly Ii is an independent set of Gi, and so

w(Ii) ≤ w(I∗i). But on the other hand maxi{w(Ii)} ≥ w(I∗)/k since we split I∗ into k sets.

Therefore w(I) = maxi{w(I∗i)} ≥ w(I∗)/k, and so the returned independent set is within a

factor of k ≤ 2 log n of the optimum.

We note here that the best algorithm for independent set in general string graphs

achieves an approximation factor of O(nε), under the assumption that any two strings

cross each other at most a constant number of times [46]. This algorithm only works for

unweighted independent set; we are not aware of any approximation results for weighted

independent set in arbitrary string graphs.

Because B2-VPG graphs can be vertex-split into two single-vertical B2-VPG representa-

tions, and the total number of segments used is O(n), we also get:

Corollary 4.14. There exists a (4 log n)-approximation algorithm for weighted independent

set on B2-VPG graphs with run-time O(n3).

Another hereditary problem is colouring: Find the minimum number k such that we

can assign numbers in {1, . . . , k} to vertices such that no two adjacent vertices receive the

same number. Fox and Pach [46] pointed out that if we have a c-approximation algorithm

for Independent Set, then we can use it to obtain an O(c log n)-approximation algorithm

for colouring. Therefore our result also immediately implies an O(log2 n)-approximation

algorithm for colouring in single-vertical graphs and B2-VPG graphs.

82

Another hereditary problem is weighted clique: Find the maximum-weight subset of

vertices such that any two of them are adjacent. (This is independent set in the complement

graph.) Clique is NP-hard in outer-string graphs even in its unweighted version [24]. For

this reason, we use the split into co-comparability graphs instead; weighted clique can be

solved in quadratic time in co-comparability graphs (because weighted independent set

is linear-time solvable in comparability graphs [53]). Weighted clique is also linear-time

solvable on permutation graphs [53]. We therefore have:

Theorem 4.15. There exists an (8 log3 n)-approximation algorithm for weighted clique on

B2-VPG graphs with run-time O(n2). The run-time becomes O(n) if the graph is a 1-string

B2-VPG graph, and the approximation factor becomes 4 log2 n if the graph is a B1-VPG

graph.

A similar result holds for clique cover, which is the problem of colouring the complement:

Find the minimum k such that the vertex set can be partitioned into k sets, each of which

induces a clique. The complexity of clique cover is unknown for outer-string graphs, but it

is polynomial for co-comparability graphs [62].

Theorem 4.16. There exists a (8 log3 n)-approximation algorithm for clique cover on

B2-VPG graphs with run-time O(n2).

In a similar manner, we can get poly-time (8 log3 n)-approximation algorithms for any

hereditary problem that is solvable on co-comparability graphs. This includes maximum k-

colourable subgraph and maximum h-coverable subgraph. See [62] for the definition of these

problems, and the argument that they are hereditary and polynomial in co-comparability

graphs.

4.4 Conclusions

In this chapter, we presented a technique for decomposing single-vertical graphs into outer-

string subgraphs, B2-VPG graphs into co-comparability graphs, and 1-string B2-VPG

83

graphs into permutation graphs. We then used these results to obtain approximation

algorithms for hereditary problems, such as weighted independent set.

As for open problems, we are very interested in approximation algorithms for Bk-VPG

graphs, where k is a constant. Also, if curves are not required to be orthogonal, but have few

bends, are there approximation algorithms better than those for arbitrary string graphs?

84

Chapter 5

B1-VPG Representations

In Chapter 3, we showed that every planar graph has a 1-string B2-VPG representation.

Ideally, we would like a B1-VPG representation instead. Whether this exists for all planar

graphs remains one of the big open questions in the field1. In this chapter, we investigate

subclasses of planar graphs that do not require two bends in their 1-string representations,

i.e., that are B1-VPG graphs. Some of the results of this chapter were published in [11].

Note that strings in B1-VPG representations have 6 possible shapes ⑤❧, ⑤❤, ❧⑤ , ❤⑤ , ⑤ , ♠. We

use the notation of an { ⑤❧}-representation to denote a representation where every shape

is an ⑤❧, and similarly for other subsets of { ⑤❧, ⑤❤, ❧⑤ , ❤⑤ , ⑤ , ♠}. Note that shapes ⑤ and ♠ in string

representations can always be tranformed into any other shape with 1 bend (this is not

generally true in the contact representations that we describe below).

In this chapter, we will several times conside so-called contact representations as they

can be used to produce string representations, and the classes of graphs with contact

representations have been extensively studied. We say that two curves make contact if the

endpoint of one of them coincides with an interior point of the other. Sometimes, we allow

two curves to end at the same point as long as no third curve uses this point; this becomes

a contact after extending one curve a bit. A contact representation of a graph G = (V,E)

1Note that a very recent result of Gonçalves et al. [55] resolves this question positively. See also

Section 8.2.

85

is an arrangement of non-crossing curves v for each v ∈ V , such that u and v make contact

if and only if (u, v) ∈ E. By stretching every curve by a small amount, one can turn every

contact into an intersection without creating any new intersections. Thus, every graph class

S that has a contact representation that uses curves admissible in B1-VPG representations

is a subclass of B1-VPG. Let us point out that any such class S is strictly smaller than

B1-VPG as all graphs in S must be planar, but any arbitrarily large clique (including K5)

belongs to B1-VPG. We use {⑤❧}-contact representation to denote a contact representation

where every shape is an ⑤❧, and similarly for other subsets of { ⑤❧, ⑤❤, ❧⑤ , ❤⑤ , ⑤ , ♠}. For brevity, we
refer to {⑤❧, ⑤❤, ❧⑤ , ❤⑤ , ⑤ , ♠}-contact representations as B1-VPG-contact representations. A graph

is a B1-VPG-contact graph if it has a B1-VPG-contact representation. Note that in contact

representations, shapes ⑤ and ♠ cannot be freely transformed into shapes with 1 bend.

5.1 Known B1-VPG representations

Before we present our own results, we discuss some of the classes of graphs that were already

known to have B1-VPG representations.

5.1.1 Planar bipartite graphs

An example of a graph class that has a B1-VPG contact representation are planar bipartite

graphs. In this case, all the curves can be required to have no bends at all, so the

representation is { ⑤ , ♠}-contact.

Lemma 5.1 (H. de Frasseix, P. O. de Mendez, J. Pach [38]). A graph has a { ⑤ , ♠}-contact
representation if and only if it is planar and bipartite.

We will sketch this construction (and most other existing constructions for B1-VPG

representations), mostly so that the reader can get an idea just how varied and different

the approaches are.

86

a

b

c

d

e

f

g h

i

j
k

l

m
n

o

p a

b c

d e f

g

h

i
k

l

m

n

o p

Figure 5.1: (a) An example of a bipartite graph. (b) Bipolar orientations. (c) Matching

contact representation.

Proof sketch of Lemma 5.1. A bipolar orientation of a graph G is an orientation of edges

which has (a) no oriented cycles; (b) two vertices s and t such that s has in-degree 0 and t

has out-degree 0; and (c) indeg(v) ≥ 1 and outdeg(v) ≥ 1 for all v 6= s, t.

Let G be a plane bipartite graph. By adding vertices into faces of length more than 4,

we can obtain a plane bipartite graph H that has all faces of length 4 and contains G as an

induced subgraph. For any face bounded by vertices b1w1b2w2 in this order, let us add a

black edge b1, b2 and a white edge w1w2, and denote the graphs induced by the black and

white edges by HB and HW respectively. Let the outerface of H consist of vertices v1v2v3v4

so that v1v3 are black and b2b4 are white. One can show that HB has a bipolar orientation

from v1 to v3. This induces a dual orientation of HW : For any interior face bounded by

vertices b1w1b2w2 in clockwise order, b1 → b2 ⇔ w1 → w2.

Represent every vertex v in HB by a horizontal segment so that the source s = v1 has

the y-coordinate y(v1) = 0 and for every bi → bj we have y(bi) < y(bj). Similarly, represent

the vertices in HW by vertical segments so that v2 has the x-coordinate x(v2) = 0 and for

any wi → wj we have x(wi) < x(wj). One can then prove that the lengths and positions of

these segments can be set appropriately so that only the required contacts are made. See

Figure 5.1 for an example.

87

5.1.2 Series-parallel graphs

An example of a graph class with B1-VPG-contact representation that require some bends

is the class of the series-parallel graphs (see e.g. [23]). A series-parallel graph is a graph

with a pair of designated distinct vertices (s, t) (so-called terminals) such that the graph is

either an edge (s, t) or can be obtained by one of the two following constructions:

1. Series composition: Given a two series-parallel graphs with terminals (s1, t1) and

(s2, t2), obtain a graph by identifying t1 with s2 and set terminals to (s1, t2).

2. Parallel composition: Given a two series-parallel graphs with terminals (s1, t1) and

(s2, t2), obtain a graph by identifying s1 with s2 and t1 with t2, and set terminals to

be (s1 = s2, t1 = t2).

As we show in the following lemma, series-parallel graphs have B1-VPG-contact repre-

sentations, and in fact, only ⑤❧-shapes are required. We are not aware of a reference that

states exactly this result, but it is implicit, e.g., in [34].

Lemma 5.2. Every series-parallel graph has an { ⑤❧, ♠, ⑤}-contact representation enclosed in

a rectangular area Θ such that

• s is represented by a horizontal segment s that lies on the top boundary of Θ.

• t is represented by a vertical segment t that lies on the right boundary of Θ.

• No other segment lies on the top or right boundary of Θ.

• Every v 6= s, t is represented by the shape of an ⑤❧.

• There is a rectangle Q called the private rectangle in the top right corner of Θ situated

on the top and right boundary of Θ and is intersected by s and t and no other curves.

If (s, t) is not an edge, then neither s nor t contains the top right corner of Q.

Proof. See Figure 5.2 for an illustration. Let G be a series-parallel graph. If G is an edge

(s, t), it can be represented by a unit-length horizontal segment s meeting a unit-length

88

vertical segment t in the top right corner of Θ. The rectangle Θ is the rectangle Q of the

representation.

Assume that two representations R1 with curves s1, t1 and R2 with curves s2, t2 are

given. Let those representations be enclosed by rectangles Θ1 and Θ2 and have private

rectangles Q1 and Q2, respectively.

For a series composition, place Θ2 below and right of Θ1. Extend t1 downwards and

s2 leftwards until they meet. Note that the shape of this vertex becomes an ⑤❧. The

representation is enclosed in a rectangle Θ whose top boundary contains s1, and the right

boundary contains t2. Note there is no edge (s1, t2) and there is an empty rectangle at the

top right corner of Θ. After extending s1 rightward and t2 upward, we can find a suitable

rectangle Q here. Note that extending s1 is feasible without adding new contacts since

either (s1, t1) ∈ E or t1 does not contain the top right corner of Q1. Similarly one argues

that t2 can be extended.

For a parallel composition, if one of the graphs is just an edge, without loss of generality

assume that it is (s1, t1), and extend s2 to meet t2 in Θ2. Otherwise, shrink Θ2 and place

it into Q1. Extend s2 leftwards until it meets s1 if needed, and extend t2 downwards

until it meets t1 if needed. As before, one argues that this creates no unwanted contacts.

The resulting representation is enclosed in Θ1 and contains a private rectangle Q2 as

required.

We can convert the curves of s and t into ⑤❧’s as well by adding dummy segments at

their ends, and hence obtain:

Corollary 5.3. Every series-parallel graph has an {⑤❧}-contact representation.

It is well-known that every outer-planar graph is a subgraph of a series-parallel graph.

Thus, Corollary 5.3 implies that every outer-planar graph has a { ⑤❧}-contact representation.

5.1.3 Laman graphs

A Laman graph is a connected graph G = (V,E) with |E| = 2|V | − 3 such that for every

induced subgraph G[W] of G, we have |E(G[W])| ≤ 2|W | − 3. It can be shown [65] that

89

s

t

s1

t2

Θ

Qt1

s2

Θ1

Θ2Θ=Θ1

Q1=Θ2

Q2

s1

t1

t2

s2

(a) (b) (c)

Q

Θ

Figure 5.2: Constructing a B1-VPG-contact representation of a series-parallel graph. (a)

The base case. (b) Parallel composition. (c) Series composition.

every Laman graph can be constructed from a triangle by a sequence of the following the

Henneberg constructions :

(H1) Connect two vertices x, y with an edge e and subdivide e with a new vertex.

(H2) Choose an edge e = (x, y) and a third vertex z, subdivide e with a vertex w and

connect w to z.

If G is a planar graph, the operations can be performed so that all the intermediate

graphs are planar as well.

Lemma 5.4 (Kobourov, Ueckerdt, Verbeek [65]). If G is a planar Laman graph, then it

has a {⑤❧, ⑤❤, ❧⑤, ❤⑤}-contact representation.

For the proof of Lemma 5.4, the authors showed that given the Henneberg construction

of a planar embedded Laman graph G, one can compute a combinatorial structure called

an angular tree. This structure can then be used to produce a labeling of angles and edges

in an embedded planar Laman graph, and subsequently compute a {⑤❧, ⑤❤, ❧⑤, ❤⑤}-contact
representation. The construction runs in time O(n2) which is required for computing the

angular tree (it can be performed in linear time if an angular tree is given). The details are

quite complicated and will be omitted here.

90

a a

b c

a

a

b

c

Figure 5.3: The two possible shapes of private regions from [42].

Note that Laman graphs also have contact representations using line segments [42, 6].

However, those segments do not need to be axis-aligned, thus those representations are not

VPG representations. Other characterizations of B1-VPG-contact graphs with connections

to Schnyder realizers and canonical orders of maximally planar graphs were provided in [34].

5.1.4 Planar 3-trees

A 3-tree (see e.g. [23]) is either a triangle, or a graph that can be obtained from a 3-tree by

inserting a new vertex of degree 3 and attaching it to a triangle.

Lemma 5.5 (Felsner et al. [42]). All planar 3-trees have {⑤❧}-representations.

We briefly review the construction proving Lemma 5.5 here as it serves as inspiration

for our construction for planar partial 3-trees presented in Section 5.2.1.

The goal of the construction is to produce a special kind of an {⑤❧}-representation that

satisfies the additional property that for every inner triangular face {a, b, c}, there exists a

subset of the plane, called the private region of the face, that intersects only the curves a,

b and c. Furthermore, there are only two possible shapes for the private regions (shown

in Figure 5.3), there is a prescribed way that the curves intersect private regions, and the

private regions of all faces are disjoint. (We used a similar concept in Chapter 3.) The

representation can be built inductively, following insertions of vertices of degree 3 into faces,

where curves are inserted into private regions as shown in Figure 5.4.

91

a a

b c

v

a a

b c

v

Figure 5.4: Building the representation by inserting a curve v and associated private regions

into the private region for triangular face a, b, c [42].

Note that planar 3-trees are unrelated to planar Laman graphs (which have B1-VPG-

contact representation, see Lemma 5.4) because Laman graphs have 2n − 3 edges while

3-trees have 3n− 6 edges, so not every planar 3-tree is a Laman graph.

5.1.5 Other graph classes

There are several other results about B1-VPG representations worth mentioning here. We

provide only a list without any further details as our work does not use these results.

Given a graph G = (V,E), its line graph H is obtained by using one vertex for every

edge of G and adding an edge (e, e′) whenever e and e′ share an endpoint. Felsner et al.

showed the following [42]:

Lemma 5.6. Every line graph of a planar graph has an {⑤❧}-representation.

The construction uses the so-called canonical ordering and builds the representation by

incrementally following this order; see [42] for more details.

Middendorf and Pfeiffer [74] showed that the complement of any even subdivision of

any graph, i.e., every edge is subdivided with a non-zero even number of vertices, has a

B1-VPG representation that uses only shapes in { ⑤❧, ❤⑤}.

A special kind of {⑤❧}-representations was investigated by Ahmed et al. [3] in 2017. Their

work is concerned with {⑤❧}-representations where the corners of ⑤❧’s lie on a lie segment

in an xy-monotone fashion. Such a representation is called ⑤❧-monotone. The authors

provide a complete characterization of graphs with ⑤❧-monotone representations as so-called

92

non-jumping graphs. Those include all outer-planar graphs, convex bipartite graphs and

chordal graphs that exclude 3 forbidden subgraphs. See [3] for the definitions and more

details. Furthermore, the authors show that not all graphs with { ⑤❧}-representations have
⑤❧-monotone representations, and that not all planar graphs are ⑤❧-monotone. Some of these

results turned out to be known earlier, see, e.g., [28, 32].

5.2 New B1-VPG representations

In the following three sections, we present our new results on B1-VPG representations.

We first extend the result of [42] and show that all planar partial 3-trees have B1-VPG

representations. We then consider special subclasses of planar partial 3-trees, so-called

IO-graphs and Halin graphs, and show that only a subset of shapes is necessary for their

representations.

5.2.1 Planar partial 3-trees

Recall the definition of a 3-tree from Section 5.1.4: a 3-tree is a graph that is either a

triangle or has a vertex order v1, . . . , vn such that for i ≥ 4, vertex vi is adjacent to exactly

three predecessors and they form a triangle. A partial 3-tree is a subgraph of a 3-tree.

Thus, partial 3-trees include all 3-trees. The class of partial 3-trees also has a non-empty

intersection with planar Laman graph, but there is no inclusion relationship between the

two.

Our construction in this section is similar to the construction of Felsner et al. [42]

of Lemma 5.5 showing that every planar 3-tree (not partial) has an {⑤❧}-representation.
Note that this implies that all 3-trees are 1-string as every { ⑤❧}-representations is a 1-

string representation. Naturally one wonders whether this carries over to planar partial

3-trees. Generally, the property of having a string representation is not closed under

taking subgraphs. However, planar partial 3-trees inherit the recursive structure from their

supergraphs. Thus, we consider it likely that the technique of [42] would work for planar

partial 3-trees. We succeeded partially: We can find a B1-VPG representation, but we need

93

to use all four possible shapes ⑤❧, ⑤❤, ❤⑤ and ❧⑤ . Our construction can be performed in linear

time.

In this section, we present the construction while proving the following theorem:

Theorem 5.7. Every planar partial 3-tree G has a 1-string B1-VPG representation.

Our proof of Theorem 5.7 employs the method of “private regions” used previously for

various string representation constructions [12, 31, 42] (and also in Chapter 3), but uses

some different shapes. We define the following (see Figure 5.5):

Definition 5.8 (F-shape and rectangular shape). An F-shaped area is a region bounded by

a 10-sided polygon with CW or CCW sequence of interior angles 90◦, 270◦, 90◦, 90◦, 270◦,

270◦, 90◦, 90◦, 90◦ and 90◦. A rectangle-shaped area is a region bounded by an axis-aligned

rectangle.

Definition 5.9 (P3T-private region). Given a 1-string representation, a P3T-private

region2 of vertices {a, b, c} is an F-shaped or rectangle-shaped area that intersects (up to

permutation of names) curves a,b, c in the way depicted in Figure 5.5(a), and that intersects

no other curves and P3T-private regions.

Note that the F-shape P3T-private region was already used for planar 3-trees (see

Section 5.1.4) while the rectangle-shaped region is a new concept.

Now we are ready to prove Theorem 5.7. Let G be a planar partial 3-tree. By definition,

there exists a 3-tree H for which G is a subgraph. One can show [17] that we may assume

H to be planar. Let v1, . . . , vn be a vertex order of H such that for i ≥ 4 vertex vi is

adjacent to 3 predecessors that form a triangle. In particular, v4 is incident to a triangle

formed by {v1, v2, v3}. One can show (see e.g. [17]) that the vertex order can be chosen in

such a way that {v1, v2, v3} is the outer face of H in some planar drawing.

For i ≥ 3, let Gi and Hi be the subgraphs of G (respectively H) induced by vertices

v1, . . . , vi. We prove Theorem 5.7 by showing the following by induction on i:

2The notion of private regions is used several times this thesis. In order to distinguish the types in

various proofs, here we use “P3T” (as in “Partial 3-Tree”) in the name of the private region.

94

a

c

b

a

b

c

a

c
b

b

(a) (b)

Figure 5.5: (a) An F-shaped (left) and rectangle-shaped (right) P3T-private region of

{a, b, c}. (b) The base case of the construction of a B1-VPG representation for a planar

partial 3-tree.

Gi has a 1-string B1-VPG representation with a P3T-private region for every

interior face of Hi.

In the base case, i = 3 and G ⊆ K3 ≃ H. Construct a representation R and find a P3T-

private region for the unique interior face of H as depicted in Figure 5.5(b). Intersections

among {a,b, c} can be omitted as needed.

Now consider i ≥ 4. By induction, construct a representation R0 of Gi−1 that contains

a P3T-private region for every interior face of Hi−1.

Let {a, b, c} be the predecessors of vi in Hi. Recall that they form a triangle. Since

Hi is planar, this triangle must form a face in Hi−1. Since {v1, v2, v3} is the outer face of

Hi (and hence also of Hi−1), the face into which vi is added must be an interior face, so

{a, b, c} is an interior face in Hi−1. Let P0 be the P3T-private region that exists for {a, b, c}
in R0; it can have the shape of an F or a rectangle.

Observe that in G, vertex vi may be adjacent to any possible subset of {a, b, c}. This
gives 16 cases (two possible shapes, up to rotation and reflection, and 8 possible adjacencies).

In each case, the goal is to place a curve vi inside P0 such that it intersects exactly the

curves of the neighbours of vi in {a, b, c} and no other curve. Furthermore, having placed

95

c

b

a

v i

(a) (vi, a) ∈ E

c

b

a

v i

(b) (vi, a) 6∈ E, but (vi, c) ∈ E

c

b

a

v i

(c) (vi, a), (vi, c) 6∈ E

Figure 5.6: Inserting curve vi into an F-shaped P3T-private region.

vi into P0, we need to find a P3T-private region for the three new interior faces in Hi, that

is, the three faces formed by vi and two of {a, b, c}.

Case 1: P0 has the shape of an F.

After possible rotation / flip of R0 and renaming of {a, b, c} we may assume that P0 appears

as in Figure 5.5(a). If (vi, a) is an edge, then place a bend for curve vi in the region above

a (Figure 5.6(a)). Let the vertical segment of vi intersect a and (optionally) c. Let the

horizontal segment of vi intersect (optionally) the top occurrence of b. If (vi, a) is not an

edge but (vi, c) is an edge, then place a bend for vi in the region below a (Figure 5.6(b)), let

the vertical segment of vi intersect c and the horizontal segment of vi intersect (optionally)

b. Finally, if neither (vi, a) nor (vi, c) is an edge, then vi is a horizontal segment in the

region below a and above c (Figure 5.6(c)) that (optionally) intersects b.

In all sub-cases, vi remains inside P0, so it cannot intersect any other curve of R0.

Private regions for the newly created faces can be found as shown in Figure 5.6.

96

vi

c

b

a

(a) (vi, a) is an edge.

vi

c

b

a

(b) (vi, a), (vi, c) 6∈ E, (vi, b) ∈ E.

vi

c

b

a

(c) (vi, a), (vi, b), (vi, c) 6∈ E.

Figure 5.7: Inserting curve vi and new private regions into a rectangle-shaped P3T-private

region.

Case 2: P0 has the shape of a rectangle.

After possible rotation / flip of R0 and renaming of {a, b, c} we may assume that P0 appears

as in Figure 5.7(a). If (v, a) is an edge, then v is a vertical segment that intersects a and

(optionally) b and (optionally) c. If (v, c) is an edge, then symmetrically v is a vertical

segment that intersects c and (optionally) b and a. Finally if neither (v, a) nor (v, c) is

an edge, then let v be a horizontal segment between a and c with (optionally) a vertical

segment attached to create an intersection with b.

In all cases, v remains inside P0, so it cannot intersect any other curve of R0. Private

regions for the newly created faces can be found as shown in Figure 5.7.

Theorem 5.7 now holds by induction. �

We note here that in our proof-approach, both types of P3T-private regions and all four

shapes with one bend are required in some cases. An example of a graph that results in

such a representation under a given elimination order is shown in Figure 5.8.

97

v1

v3v2

v4

v5
v6

v7

(a) A partial 3-tree with fixed elimination

order.

v1

v3

v2

v4

v5

v6

v7

(b) The representation constructed using

P3T-private regions.

Figure 5.8: An example of a graph and elimination order that results in a representation

with all four B1-VPG shapes.

5.2.2 IO-Graphs

An IO-graph [41] is a 2-connected planar graph with a planar embedding such that the

interior vertices form a (possibly empty) independent set. See Figure 5.10 for an example.

IO-graphs are a subclass of planar partial 3-trees [41]. Here we show that, unlike for planar

partial 3-trees, fewer shapes suffice in B1-VPG representations of IO-graphs. We can show

the following:

Theorem 5.10. Any IO-graph has an {⑤❧}-representation.

To prove Theorem 5.10, fix an IO-graph G. Let O be the set of exterior vertices; by

definition these induce an outerplanar graph G[O]. Moreover, since G is 2-connected, the

outer face is a simple cycle, and hence G[O] is also 2-connected. We first construct an

{ ⑤❧}-representation of G[O], and then insert the interior vertices. To do so, we again use

private regions, but we modify their definition slightly in three ways: (1) In an IO-graph,

interior vertices may have arbitrarily high degree, and so the private regions must be allowed

to cross arbitrarily many curves. (2) Interior vertices may only be adjacent to exterior

98

x1

xd

xd−1

x2

x3

xd−2

Figure 5.9: An IO-private region. We require that the supporting line of xi (for i =

2, . . . , k − 2) intersects the upper segment of xd.

vertices. It therefore suffices for the private region of face f to intersect only those curves

that belong to exterior vertices on f . It is exactly this latter observation that allows us

to find private regions more easily, therefore use fewer shapes for them, and therefore use

fewer shapes for the curves. We can therefore also add: (3) The private region must be an

F-shape, and it must be in the rotation
F
. The formal definition is given below:

Definition 5.11 (IO-private region). Given a 1-string representation of an IO-graph, an

IO-private region of a face f is an F -shaped area P , in the rotation
F
, that intersects curves

x1,x2, . . . ,xd as shown in Figure 5.9. Here, {x1, . . . , xd} is a subset of the vertices of f

enumerated in CCW order, and includes all exterior vertices that belong to f (it may or

may not include other vertices). Lastly, P intersects no other curves and no other private

regions.

Lemma 5.12. Any outer planar graph has an {⑤❧}-representation with an IO-private region

for every interior face.

The representation can be obtained from Lemma 5.2 since every outerplanar graph

is series-parallel. However, to argue the claim about private regions, we re-iterate the

99

construction here, specifically tailored to outerplanar graphs. This construction has been

very recently re-discovered in [3].

Proof of Lemma 5.12. We may assume that the outerplanar graph is 2-connected, otherwise

we can add vertices to make it so and delete their curves later. Enumerate the vertices

on the outer face as v1, . . . , vk in CCW order. For every vertex vi on the outerface, let

vi be an ⑤❧ with the bend at (i,−i). The vertical segment of vi reaches until (i,−ri + ε),

where ri = min{j : (vj, vi) ∈ E}. (Use r1 = 1.) The horizontal segment of vi reaches until

(si + ε, i), where si = max{j : (vj, vi) ∈ E}. (Use sk = k.) See also Figure 5.10.

It is quite easy to see that this is a 1-string representation. For every edge (vi, vk) with

i < k we have created an intersection at (k,−i). Assume for contradiction that vi and vk

intersect for some (vi, vk) 6∈ E with i < k. Then we must have s = max{j : (vi, vj) ∈ E} > k,

else there is no intersection. Also r = min{j : (vj, vk) ∈ E} < i, else there is no intersection.

But then (vi, vs) and (vj, vr) are edges, and {vi, vj, vs, vr} together with the outer face form

a K4-minor; this is impossible in an outer-planar graph.

Thus we found the {⑤❧}-representation. To find IO-private regions, we stretch horizontal

segments of curves further as follows. For vertex vi, set ti = max{j : vi and vj are on a

common interior face}. If ti > si, then expand vi horizontally until x-coordinate ti − ε. To

see that this does not introduce new crossings, observe that adding (vi, vti) to the graph

would not destroy outerplanarity, since the edge could be routed inside the common face.

The { ⑤❧}-representation of such an expanded graph would contain the constructed one and

also contain the added segment. Therefore the added segment cannot intersect any other

curves.

After stretching all curves horizontally in this way, an IO-private region for each interior

face f can be inserted to the left of the vertical segment of vj, where vj is the vertex on f

with maximal index; see also Figure 5.10.

Observe that for any crossing, one curve ends, so this representation can easily be

converted into an { ⑤❧}-contact representation (which is the one that Lemma 5.2 would have

given).

100

v1

v2

v3

v4

v5

v6

v1

v2
v3 v4

v5

v6

v11

v10

v9
v8

v7
v7

v8

v9

v10

v11

Figure 5.10: Example of an IO-graph and the {⑤❧}-representation of G[O]. The dotted

vertices in the graph form an independent set that is attached to an outerplanar graph.

The IO-private regions in the representations are shaded in grey.

101

Now we can prove Theorem 5.10, i.e., we can show that every IO-graph G has an

{ ⑤❧}-representation. Start with the { ⑤❧}-representation of G[O] of Lemma 5.12. We add the

interior vertices v1, . . . , vn−k to this in arbitrary order, maintaining the following invariant:

For every interior face of the current graph there exists an IO-private region.

Clearly this invariant holds for the representation of G[O]. Let v be the next interior vertex

to be added, and let f be the face where it should be inserted. By induction there exists an

IO-private region P0 for face f such that the curves x1, . . . ,xd that intersect P0 include the

curves of all exterior vertices that are on f , in CCW order. We need to place an ⑤❧-curve v

inside P0, intersecting curves of neighbours of v and nothing else, and then find IO-private

regions for every newly created face.

Since the interior vertices form an independent set, all neighbours of v are on the outer

face, and hence belong to {x1, . . . , xd}. Since G is 2-connected, v has at least two such

neighbours. We have two cases (illustrated in Figure 5.11).

Case 1. If (v, xd) is not an edge, then v is a vertical segment that extends from the

topmost to the bottommost of the curves of its neighbours, and intersects these curves after

expanding them rightwards.

Since the order of x1, . . . ,xd is CCW around the outer face, for every newly created

face f ′ incident to v we have a region inside P0 in which the curves of outer face vertices

on f ′ appear in CCW order. IO-private regions for these faces can be found as shown in

Figure 5.11(top). Note that some of these private regions intersect v while others do not;

both are acceptable since v is on those faces, but not an exterior vertex.

Case 2. If (v, xd) is an edge, then v is an ⑤❧, with the bend below xd−1 if (v, xd−1) is an

edge and above xd−1 otherwise. The vertical segment of v extends from this bend to the

topmost of v’s neighbours in {x1, . . . ,xd−1}, and intersects the curves of these neighbours

after expanding them rightwards. The horizontal segment extends as to intersect xd.

IO-private regions can again be found easily, see Figure 5.11(middle and bottom).

Repeating this insertion operation for all interior vertices hence gives the desired

representation of G. �

102

x1

x2
x3

xd−1

xd

v

x1

xd

xd−1

x2

x3

v

(a) v is not adjacent to xd.

x1

x2
x3

xd−1

xd

v

x1

xd

xd−1

x2

x3

v

(b) v is adjacent to xd, but not xd−1.

x1

x2
x3

xd−1

xd

v

x1

xd

xd−1

x2

x3

v

(c) v is adjacent to both xd and xd−1.

Figure 5.11: Inserting a vertex into a face of an IO-graph.

103

5.2.3 Halin graphs

A Halin-graph [57] is a graph obtained by taking a tree T with n ≥ 3 vertices that has

no vertex of degree 2 and connecting the leaves in a cycle. Such graphs were originally of

interest since they are minimally 3-connected. Halin graphs are subgraphs of planar partial

3-trees [18].

Note that the existence of B1-VPG representations for Halin graphs is easy to argue in

two different ways. First, Halin graphs are partial 3-trees, so Theorem 5.7 applies. Second,

they can be shown to be Laman graphs (unless they have only one interior vertex), and so

Lemma 5.4 applies. However, both approaches potentially use all four B1-VPG shapes and

we hence give here a direct construction showing the following:

Theorem 5.13. Any Halin-graph has:

(a) a 1-string {⑤❧, ❤⑤}-representation, where only one vertex uses a curve of shape ❤⑤.

(b) an { ⑤❧}-representation.

Note that an {⑤❧}-representation is 1-string too by definition. We prove both parts of

Theorem 5.13 at once providing two very similar constructions. The significance of part

(a) of Theorem 5.13 is that the very same construction can be easily modified to produce

B1-VPG-contact representations instead of B1-VPG representations. Therefore, we will

also obtain the following corollary:

Corollary 5.14. Any Halin-graph has a B1-VPG-contact representation such that every

vertex is represented by a shape in {⑤❧, ⑤, ❤⑤}, only one vertex uses shape ❤⑤, and one vertex uses

shape ⑤.

Our construction will work even if the tree T has some vertices of degree 2. Fix an

embedding of G such that the outer face is the cycle C connecting the leaves of tree T .

Enumerate the outer face as v1, . . . , vk in CCW order. Since every exterior vertex was a

leaf of T , vertex vk has degree 3; let r be the interior vertex that is a neighbour of vk. Root

T at r and enumerate the vertices of T in post-order as w1, . . . , wn, starting with the leaves

(which are v1, . . . , vk) and ending with r.

104

Let Gi be the graph induced by w1, . . . , wi. Call vertex vj unfinished in Gi if it has a

neighbour in G−Gi. For i = k, . . . , n, we create an { ⑤❧}-representation of Gi − (v1, vk) that

satisfies the following:

For any unfinished vertex v, curve v ends in a horizontal rightward ray,

and the top-to-bottom order of these rays corresponds to the CW order of the

unfinished vertices on the outer face while walking from v1 to vk.

The { ⑤❧}-representation of Gk−(v1, vk) (i.e., the path v1, . . . , vk) is obtained easily by placing

the bend for vi at (i,−i), giving the vertical segment length 1+ ε and leaving the horizontal

segment as a ray as desired. To add vertex wi for i > k, let x1, . . . , xd be its children in T ;

their curves have been placed already. Insert a vertical segment for wi with x-coordinate

i, and extending from just below the lowest curve of x1, . . . ,xd to just above the highest.

The rays of x1, . . . ,xd end at x-coordinate i+ ε, while wi appends a horizontal ray at its

lower endpoint.

Since adding wi means that x1, . . . , xd are now finished (no vertex has two parents),

the invariant holds. Continuing until i = n yields an { ⑤❧}-representation of G − (v1, vk).

It remains to add an intersection for edge (v1, vk). To do so, we change the shape of

v1. Observe that its vertical segment was not used for any intersection, and that its

horizontal segment can be expanded until (n+ 1,−1) without intersecting anything except

its neighbours. After this expansion, we add a vertical segment going downward at its right

end. Since vk is a neighbour of r, curve vk ended when r was added, i.e., at x-coordinate

n + ε, and we can extend it until x-coordinate n + 1 + ε. Hence v1 and vk can meet at

(n+ 1,−k) if we change the shape of v1 to ❤⑤. We have hence proved Theorem 5.13(a). �

By retracting curves so that they only touch, the representation becomes a B1-VPG-

contact representation that only uses shapes ⑤❧ and ❤⑤, and ⑤ (for r). Since our construction

for Halin-graphs produces contact representations, any contact (or crossing) can be omitted.

Our result therefore holds not only for Halin graphs, but also for any subgraph of a Halin

graph. This concludes the proof of Corollary 5.14.

Independently of our our work, Francis and Lahiri [50] proved that Halin-graphs are

in fact {⑤❧}-intersection graphs, confirming our conjecture from [11]. Our construction of

105

v1

v2

v3

v5

w7

w8

w9

v6

r

v4

v1

v2
v3

v6

w7

w8

r

v5

v4

w9

Figure 5.12: Example of an extended Halin-graph and its {⑤❧, ❤⑤}-representation, obtained by

changing the curve of v1 so that it intersects vk.

contact representations presented above is able to prove this in the case where r has no

neighbours on the outer face other than vk. We can then change the vertex ordering so

that it ends with the children of r in CCW order, followed by r and vk. Then r can be a

horizontal segment crossing the vertical segments of the children, and vk can be placed

entirely differently to intersect vk−1,v1 and r. Figure 5.13a illustrates this idea.

If we do not require that the constructed representation is a contact representation,

our construction can work with ⑤❧ shapes only as well. The main idea is as follows: The

❤⑤ shape is currently required to represent the edge (v1, vk). If r is adjacent to both vk−1

and vk, we can represent v1 with an ⑤❧-shape instead, by not placing vk in the initial step,

but after placing r. After placing r, we can bend r rightwards and have vk−1 just above

r in the bottom row, because it intersected r, and v1 in the top row. Extend all three

rightward and place vk as vertical right-most segment there to hit them all. Figure 5.13b

shows the obtained representation and the intersection between vk−1 and r, which is now

not a contact.

One can now argue that one of those two cases applies for a suitable choice of r and vk:

106

either r has no neighbours on the outer face other than vk, or r is adjacent to both vk and

vk−1. This is can be achieved by choosing r to be the vertex where the two neighbours on

the outer face are as close together as possible (the same argument is used in [50]). This

finishes the proof of Theorem 5.13(b).

Finally, let us show that one cannot improve Theorem 5.13 to show that Halin graphs

have {⑤❧}-contact representations:

Theorem 5.15. Let G be a connected graph with n ≥ 2 vertices that has an { ⑤❧}-contact
representation. Then G has at most 2n− 3 edges.

Proof. Any {⑤❧}-contact representation has two extreme ⑤❧-shapes:

• The top-most ⑤❧-shape with the maximum y-coordinate of the bend. Observe that the

endpoint of its vertical segment does not make contact with any other ⑤❧-shape and

can be extended to infinity upwards.

• The right-most ⑤❧-shape with the maximum x-coordinate of the bend. Observe that

the endpoint of its horizontal segment does not make contact with any other ⑤❧-shape

and can be extended to infinity rightwards.

Note that the top-most and right-most ⑤❧-shapes are distinct unless the graph consists of

a single vertex. We argue there is one more endpoint of an ⑤❧-shape that does not make a

contact with any other shape. Consider the top-most ⑤❧. If its horizontal segment can be

extended to infinity rightwards, we found the desired endpoint. Otherwise, it makes contact

with another vertical segment of an ⑤❧-shape. Let us call that shape S; possibly S is the

right-most ⑤❧-shape. Since the y-coordinate of the bend of the top-most ⑤❧ is maximum, the

vertical segment of S cannot make a contact with any other ⑤❧.

As any edge in G corresponds to one endpoint contact, and there are at least 3 endpoints

that do not make any contacts, G has at most 2n− 3 edges.

Note that since the top-most and right-most ⑤❧-shapes can be distinct, they can form a

contact with each other, thus the bound of 2n− 3 edges appears to be tight.

107

v1

v2

v3

v5

w7

w8

w9

v6

r

v4

(a) Case 1: {⑤❧}-representation obtained by changing the curve of r and vk, if r has no

other neighbours on the outer face. Refer to Figure 5.12 for the graph.

w8

v1

v1

v2

v3

v5

w7

w8

w9

v6

r

v4

v2
v3

v6

w7

r

v5

v4

w9

(b) Case 2: {⑤❧}-representation of a Halin graph with different placement of vk.

Figure 5.13: Constructing an { ⑤❧}-representation of a Halin graph. The intersection that

cannot be turned into a contact is highlighted.

108

A wheel Wk is a cycle Ck of length k together with a vertex v connected to all vertices

of Ck. A wheel Wk is both a Halin and an IO-graph with n = k + 1 vertices and

2k = 2(k + 1)− 2 = 2n− 2 edges. Thus, it is an example of a graph that cannot have an

{ ⑤❧}-contact representation by Theorem 5.15.

Corollary 5.16. There are IO-graphs and Halin graphs that do not have { ⑤❧}-contact
representations.

5.3 Graphs with no B1-VPG representations

In the previous sections, we provided some positive results and showed that some graph

classes (planar partial 3-trees and all planar Laman graphs) have B1-VPG representation.

In this section, we present graphs that cannot have B1-VPG representations.

There are two known constructions that can be used to produce graphs that do not have

B1-VPG representations. Chaplick et al. [33] showed that for any k, the class of graphs

with Bk+1-VPG representations is strictly larger than the class of graphs with Bk-VPG

representations. We present the graph obtained using their construction here. The other

example is based on the construction of Kratochv́ıl and Matoušek from 1991 [70] and is

presented in Chapter 7. Our hope had been to construct a planar graph that does not have

a B1-VPG representation, either directly from the construction, or by modifying it. We did

not succeed 3, but the construction in Chapter 7 can be modified to give graphs that are

close to planar in some sense.

Now we review the construction from [33]. Consider a closed rectangle whose boundary

is formed by intersecting two orthogonal curves. There are two ways of creating such an

area: one that requires two bends on one curve and none on the other curve; and one that

requires a single bend on each curve. Thus, in order for two orthogonal curves to create

two closed rectangular areas, at least one of them has to have at least two bends.

Let us fix one particular B2-VPG representation R of K2 = (V = {x, y}, E = {xy}) that
gives rise to two closed rectangular areas A1, A2 so that each curve contributes precisely

3This is not surprising; see Section 8.2.

109

one bend to each of the areas (see the thick curves in Figure 5.15). Overlay a 5× 5 grid

over the representation so that every cell contains at most 1 intersection or endpoint of a

curve of R. Call the constructed representation R′. Now, replace every grid vertex v with a

gadget that consists of a horizontal vertex segment S1(v) and vertical vertex segment S2(v)

that intersect each other. For every edge e between grid vertices u and v, replace the edge

with three segments S(u, e), S(e) and S(v, e) so that (see Figure 5.14):

• the edge segment S(e) has the same slope (horizontal or vertical) as e;

• the edge segment S(e) intersects only the edge connectors S(u, e) and S(v, e);

• the edge connectors S(u, e) and S(v, e) have slopes opposite the edge e and intersect

only S(e) and Si(u) and Si(v), respectively, where i ∈ {1, 2} is such that the slope of

e and the intersected vertex segment are the same.

Call the final representation R′′. Observe that the graph G′′ obtained by replacing every

intersection and bend of R′′ with a vertex is a subdivision of a 3-connected planar graph,

and as such, it has unique embedding (up to the choice of the outer face). Also, observe

that the graph contains two separating cycles each formed by the boundary of the original

rectangular areas A1, A2. Thus, any embedding of G′′ has to contain two closed areas with

disjoint interiors that correspond to A1, A2 that are bounded by subcurves of x and y.

Therefore, x and y together have at least 4 bends, and G′′ has no B1-VPG representation.

The modified representation of G′′ is shown in Figure 5.15. This graph is not planar (see

Figure 5.15). It is close to planar in the sense that removing the two vertices (x and y)

would make it planar, but there appears to be no way to modify the construction to make

it planar.

5.4 Conclusions

In this chapter, we showed that every planar partial 3-tree has a 1-string B1-VPG represen-

tation. We also showed that IO-graphs and Halin graphs have { ⑤❧}-representations.

110

S1(v)

S2(v)

S(e)

S(v, e)

Figure 5.14: Replacing grid vertices with segment gadgets.

We also recalled the construction from [33] to show that some graphs are not B1-VPG

graphs. We presented one specific example of such a graph. Note that the graph is not

1-string (for the same reason that it is not B1-VPG). This naturally raises the following

question: is there a graph with a 1-string representation that is not B1-VPG?

111

Figure 5.15: A B2-VPG representation of a graph that does not have a B1-VPG represen-

tation. Note that it is not planar: the two thick and the highlighted curves represent a

subdivision of K3,3.

112

Chapter 6

Order-Preserving String

Representations

It is our experience that string representations are often hard to read, because the crossings

of curves for edges occur at unexpected places. Thus, verifying if a string representation

corresponds to a given graph with the naked eye is sometimes difficult.

Therefore, in this chapter, we study the following question: Does every planar graph

have a 1-string representation where the order of crossings along curves preserves the planar

embedding in the sense that the order of crossings along the curve of v corresponds to the

cyclic order of edges around v in some planar embedding?

In addition to the aforementioned motivation, being able to show that planar graphs

have order-preserving 1-string representations could make constructing such representations

easier by using the typical incremental approach that adds one vertex on the outer-face at

a time (recall that no short proof that planar graphs are in 1-String is known). For this

it would be especially helpful if such representations were also outer-string. We show the

following:

• We first discuss three possible variants of order-preservation. For the first variant

(linear order-preserving), we present an algorithm that tests whether such a string-

representation exists in linear time by reducing it to planarity testing.

113

• For the second variant (cyclically order-preserving), we show that not all planar

graphs have such a 1-string representations. In fact, we can construct a planar 3-tree

that has no such representation.

• For some subclasses of planar partial 3-trees, we construct cyclically order-preserving

1-string representations. For outer-planar graphs, these are additionally outer-string

(and use segments), while for the other graph classes we show that order-preserving

outer-1-string representations do not always exist.

• The third variant (selectively order-preserving) defines the concept for string repre-

sentations where two curves may intersect more than once. This variant also makes

contact representations order-preserving with respect to planar embeddings that they

imply.

Some results from this chapter were published in [14].

6.1 Linearly order-preserving 1-string representations

Let G be a planar graph given together with a combinatorial embedding, and for each vertex

v of G let L(v) be a list of v’s neighbours in order as they appear around v in the embedding

of G (breaking the cyclic order arbitrarily; this is a combinatorial embedding, except that

we also fix who is first). Let R be a 1-string representation of G. We say that the order of

crossings along curves in R linearly preserves (G,L) if the order of crossings along every

curve v corresponds to L(v). We also say that R is linearly order-preserving with respect

to (G,L). Note that this model is geared specifically towards 1-string representations and

linear order-preservation is undefined for representations that are not 1-string. Also note

that the concept of linearly order-preserving string representations could be applied to any

graph (possibly non-planar), as long as the lists L(v) are determined in some way.

Lemma 6.1. Given a graph G along with an ordered list of neighbours L(v) for every

vertex v ∈ V (G), there is linear-time algorithm that decides whether G has a 1-string

representation R that linearly preserves (G,L).

114

u

v

u v

u

v

v u

u v

v
u

(a) (b) (c)

quv

outuv
v

outuv
u

in uv
u

inuvv

Figure 6.1: (a) A realization of a crossing-vertex that does not induce a string representation.

(b) A realization of a crossing-vertex that does induce a string representation. (c) A gadget

that forces proper crossing-vertex realization.

Proof. We first sketch an idea that does not quite work. Let R be any 1-string representation

of G. Let us construct a graph Q from R by replacing the crossings in R by dummy vertices.

The representation R is then a drawing of Q in the plane, so Q is planar. Note that Q can

be constructed directly from G and the ordered lists L(v). One might think that given

G and the order lists L(v), one only needs to construct Q and test whether it is planar.

However, the fact that Q is realizable as a planar graph does not imply the existence of a

1-string representation for G. The realization of Q can make two curves “touch” instead

of making them intersect (see Figure 6.1(a)). To force an intersection, a proper order of

edges around each dummy vertex is needed (see Figure 6.1(b)). Thus, instead of replacing

crossings with vertices, we replace them with gadgets that force proper crossings and do

not admit touches (see Figure 6.1(c)).

So, given a graph G and a list L(v) for each vertex, create a graph H0 as follows. For

each edge (u, v) in G, add a vertex quv. These vertices represent the intersections. Then

add four more vertices inv
uv, in

u
uv, out

v
uv, out

u
uv and connect them into a cycle (in this order),

and connect them to quv. Observe that now in H0, every vertex quv is part of the desired

gadget. Finally, if L(v) = {u1, u2, . . . , ud} then for i = 1, . . . , d − 1 connect outvuiv
with

inv
ui+1v

.

We claim that H0 is planar if and only if G has a linearly order-preserving 1-string repre-

115

sentation R. Given such an R, we replace the crossings with vertices quv and embed the re-

maining vertices on the curves connecting them. We can add the cycle inv
uv, in

u
uv, out

v
uv, out

u
uv

in the vicinity of the crossing, since curves u and v cross properly.

Now assume that H0 is planar, and fix a planar drawing Γ. For each v ∈ V (G), let v

be the curve consisting of edges induced by {inv
uv, quv, out

v
uv|u intersects v} in Γ. This is a

curve since we connected these vertices following the order of L(v). Clearly, v and u have

the point at quv in common. Since the gadget around quv is 3-connected, the edges at quv

alternate between u and v and form a proper crossing. Due to our method of connecting

edges, the order of intersections along v is exactly L(v). Finally, no other intersections can

exist since Γ is planar.

As planarity can be tested in linear time, this concludes the proof.

It is easy to see that not all planar graphs have a linearly order-preserving 1-string

representation; we show a stronger result in Theorem 6.3.

6.2 Cyclically order-preserving 1-string representations

Fix a combinatorial embedding of a graph. We say that a 1-string representation is cyclically

order-preserving with respect to the combinatorial embedding if for any vertex v, we can

walk along curve v from one end to the other and encounter the crossings with w1, . . . ,wk

in the same order in which the neighbours w1, . . . , wk of v appear in the cyclic order of

edges around v. This leaves open the choice of which neighbour of v should be w1, since

the order at v is cyclic while the order along v is not. Throughout this section, we often

write “order-preserving” when we mean “cyclically order-preserving.”

6.2.1 Graphs with no cyclically order-preserving representations

In this section, we show that there exist planar graphs that have no cyclically order-

preserving 1-string representation. To define them, we need again the stellation operation

defined earlier. Recall that, given a plane graph G, the stellation of G is obtained by

116

clockwise

a

b

c

x

(a)

a b

c

(b)

a

b

c
x

(c)

x

Figure 6.2: An illustration of incidences for the proof of Lemma 6.2. (a) A vertex with

fixed rotation of the neighbours. (b) An unbroken incidence between a and c. (c) A broken

incidence between a and c.

inserting a new vertex into every face of G, and making it adjacent to all vertices incident

to that face. The triple-stellation of G is obtained by stellating G to get G′, stellating G′

to get G′′, and finally stellating G′′.

Lemma 6.2. Let G be a plane graph with minimum degree 3 and at least |V (G)|+ 1 faces

that are triangles. Then the triple-stellation G′′′ of G has no cyclically order-preserving

1-string representation with respect to this combinatorial embedding.

Proof. Assume for contradiction we had such a 1-string representation R, and let RG be

the induced 1-string representation of G, which is also order-preserving. The following

notation will be helpful: If a, c are neighbours of b, then let b[a, c] be the stretch of b

between the intersection with a and c.

Consider a face-vertex-incidence in G, which can be described by giving a vertex b and

two neighbours a, c of b that are consecutive in the clockwise order at b. We call such a

face-vertex-incidence unbroken if (in RG) b[a, c] contains no other crossing, else we call

it broken (see Figure 6.2). Since RG is order-preserving, for every vertex b in G only one

face-vertex-incidence at b is broken1. Since G has at least |V (G)|+ 1 triangular faces, there

exists a face T = {u, v, w} of G such that all face-vertex-incidences at T are unbroken.

1Using this terminology, the only difference between linear and cyclic order preservation is that the

former prescribes which face-vertex incidence is broken, while the latter leaves this choice free.

117

u

u'

v

w

x

y

z

CC'

C'''
C''

u

v

w

x

y

u'

Figure 6.3: For the proof of Lemma 6.2.

Thus u[v, w], w[u, v] and v[u, w] all contain no other crossing in RG, and hence bound

a finite region C in RG. We will find a contradiction at the stellation vertices that were

placed in T and hence must intersect with C in special ways. See also Figure 6.3.

Let x be the vertex that (during the stellation of G to get G′) was placed in face T .

We claim that x must intersect u in u[v, w]. To see this, recall that degG(u) ≥ 3, hence u

has at least one other neighbour u′ in G. Since the face-incidence at u is unbroken, u[v, w]

contains no other crossing of RG, so u′ intersects u outside this stretch. Since T is a face

in G, the (clockwise or counter-clockwise) order of neighbours at u in G′ contains u′, v, x, w.

To maintain this order in the string representation, the intersection between x and u (in

R) must be on u[v, w]. Similarly one argues that x intersects v[u, w] and w[u, v].

Recall that C is the region bounded by u[v, w] ∪w[u, v] ∪ v[w, u]; this is a face of RG,

but may get partitioned by vertices inserted when stellating G. Curve x intersects δC

three times by the above, and no more since curves intersect at most once in a 1-string

representation. So x starts (say) inside C, crosses δC to go outside, crosses δC to go

inside, and then crosses δC again to end outside. Between the second and third crossing,

x contains a stretch that is inside C; after possible renaming of {u, v, w} we assume that

this is x[v, w]. This stretch splits C into two parts, say C ′ (incident to parts of u) and Cr

(incident to the crossing of v and w).

Let y be the vertex that (during the stellation of G′ to get G′′) was placed in the face

{v, w, x} of G′. Since v, w, x all have degree 3 or more in G′, as before one argues that y

must intersect x[v, w], w[x, v] and v[w, x]. Curve y intersects δC ′ (in x[v, w]), but cannot

118

intersect δC ′ a second time, else it would cross u (but (u, y) 6∈ E) or would cross one of

x,v,w twice (which is not allowed). Hence y starts inside C ′, then crosses x, and then

crosses one of v and w. Up to renaming of {v, w} we may assume that y crosses v first.

Hence y[x, v] splits Cr into two parts, say C ′′ (incident to parts of w) and C ′′′ (incident to

the crossing of v and x).

Now finally consider the vertex z that was placed in {x, y, v} when stellating G′′ to

obtain G′′′. As before one argues that z has an end inside C ′, because it crosses x in stretch

x[v, y] ⊂ x[v, w], and it cannot cross C ′ again. But we can also see that z has an end inside

C ′′, since it crosses y[x, v] and crosses no other curve on the boundary of C ′′. But this

means that z has both ends outside C ′′′, contradicting that it must intersect the boundary

of C ′′′ three times to respect the edge-orders at x, y, v. Contradiction, so G′′′ does not have

an order-preserving 1-string representation.

Theorem 6.3. There exists a planar 3-tree that has no cyclically order-preserving 1-string

representation.

Proof. Start with an arbitrary planar 3-tree G with n ≥ 6 vertices; this has minimum

degree 3 and 2n − 4 ≥ n + 2 triangular faces in its (unique) combinatorial embedding.

Stellating a 3-tree gives again a 3-tree, so by Lemma 6.2 the triple-stellation of G is a 3-tree

that has no order-preserving 1-string representation.

The smallest graph (see Figure 6.4) without order-preserving string representation

derived from Theorem 6.3 has 6 + 8 · 13 = 110 vertices. We do not believe that it is the

smallest example of a graph with no cyclically order-preserving embedding, but we do not

know of a smaller one. Also, this graph is 3-outer-planar, i.e., if we remove the vertices

from the outerface, and repeat the operation twice on the resulting graph, then all the

vertices are removed (see Figure 6.4). Is there a 2-outer-planar example, i.e., a graph that

can be entirely eliminated by removing the outerface vertices twice only? (We will see in

Section 6.3 that outer-planar graphs have order-preserving 1-string representations.)

Corollary 6.4. The algorithms for constructing B1-VPG representations of (partial) 3-trees

in Lemma 5.5 and Theorem 5.7 do not create cyclically order-preserving representations.

119

Figure 6.4: A triple stellation of a 3-tree with 6 vertices. The edges of the last stellation

are not shown. The graph is 3-outer-planar—after removing the black outer-face vertices,

the gray vertices are on the outer-face. Every other vertex has a black or gray neighbour.

120

Proof. These algorithms cover 3-trees and partial 3-trees which include 3-trees. The claim

is immediately implied by Theorem 6.3.

6.3 Outer-planar graphs

Now we turn towards positive results and show that every outer-plane graph has an order-

preserving outer-1-string representation. We first discuss one existing result that does not

quite achieve this. It is easy to show that every outer-planar graph can be represented as

contact graph of line segments because it is a Laman graph [42] (see also Section 5.1.3).

The standard way to do this (see also Figure 6.5) results, after extending the segments a

bit, in a segment-representation that is order-preserving and such that every segment has

a point visible from infinity. However, this does not quite achieve our goal, because the

ends of segments are not necessarily on the outer-face which the definition of outerstring

representations demands. We could bring an end of each segment to the outerface by

tracing around segments, but then the representation would not be 1-string.

We instead give two other constructions. The first one uses the fact that any outer-planar

graph is a circle graph, i.e., the intersection graph of chords of a circle [84]. This obviously

gives an outer-segment representation, but it need not be order-preserving (see Figure 6.5).

Our first construction hence re-proves this result and maintains invariants to ensure that

the representation is indeed order-preserving.

The resolution in this representation could be very bad, and we therefore give a second

construction where the curves are orthogonal instead. We use one bend for each vertex

curve here, and so obtain a B1-VPG-representation. Since there are n vertices and at most

n bends, the representation can be embedded into a grid of size O(n)×O(n).

In our proofs, we use that any 2-connected outer-planar graph G can be built up

as follows [56, Lemma 3]: Fix an edge (u, v). Now repeatedly add an ear, i.e., a path

P = u0, u1, . . . , uk, uk+1 with k ≥ 1 where (u0, uk+1) is an edge on the outer-face of the

current graph G′, and u1, . . . , uk are new vertices that induce a path and have no edges to

G′ other than (u0, u1) and (uk, uk+1).

121

a

b c

d

e

(a) An outer-planar graph.

a

b

c

d

e

(b) A segment-representation that is not outer-

segment at e.

a

c

d

e
b c

b

a

e

d

(c) A representation as a circle graph that is not

order-preserving at c.

Figure 6.5: Representations of an outer-planar graph.

122

P0

P1

P2
P3

P4

Figure 6.6: Building a 2-connected outerplanar graphs by adding ears.

Thus we iteratively build a representation R of the subgraph formed by the first few

ears. A crucial requirement of R is the following order-condition: If w and w′ are the

counterclockwise and clockwise neighbours of v on the outer-face, then we encounter the

neighbours of v in order, starting with w and ending with w′, while walking along v. Put

differently, the broken face-vertex-incidence is the one on the outer-face—this is equivalent

to linearly order-preserving with the “natural” way of starting and ending in the outer-face.

We consider v to be directed so that it intersects first w and last w′; the two ends of v are

hence distinguished as head and tail.

The second crucial ingredient for both proofs is to reserve (somewhat similar as was

done for faces in Chapter 3 and Chapter 5 and also [31, 42]) for each edge a region that

can be used to attach subgraphs. Thus define a private region Suv of an edge (u, v) to be a

region that contains an end of u and an end of v and does not intersect any other curve

or private region of R. Both constructions maintain such a private region Suv for every

outer-face edge (u, v). Moreover, if v is the clockwise neighbour of u, then Suv contains the

tail of u and the head of v.

6.3.1 Circle-chord representation

We now re-prove that outer-planar graphs are circle graphs, and show that furthermore

constructed representation can preserve the order with respect to any given outer-planar

embedding.

Theorem 6.5. Every outer-planar graph G has a cyclically order-preserving representation

as an intersection graph of chords of a circle C with respect to any outer-planar embedding

of G.

123

Proof. It suffices to prove the claim for a 2-connected outer-planar graph G since every

outer-planar graph G′ is an induced subgraph of a 2-connected outer-planar graph G, and

therefore a string representation for G also yields one for G′ by deleting curves of vertices

in G−G′.

We create a representation R while building up the graph via adding ears, and main-

taining curve directions and private regions as explained before. We maintain the invariant

that each private region Suv is bounded by parts of circle C and a chord of C and does not

contain the crossing of u and v. Further, the tail of u and the head of v lie in the interior

of the circular arc that bounds Suv.

In the base case, G is an edge (u, v) which can be represented by two chords through

the center of C. See Figure 6.7. We reserve two private regions for (u, v), because the

outer-face of a single-edge graph should be viewed as containing this edge twice (we can

add ears twice at it). All conditions are easily verified.

For the induction step, let us assume that G was obtained by adding an ear P =

u, x1, . . . , xk, v at some edge (u, v), with u the counter-clockwise neighbour of v on the

outer-face. Consider the private region Suv of edge (u, v) and let C[u, v] be the arc of C

between the tail of u and the head of v that lies inside Suv. Let u
′ and v′ be two points on

C just outside C[u, v] but still within Suv. If k = 1, then we add x1 by using chord u′v′

for x1. If k > 1, then we insert 2k − 2 points on the interior of C[u, v] and create chords

for x1, . . . ,xk so that everyone intersects as required. See Figure 6.7, which also shows the

private regions that we define for the new outer-face edges.

Since Suv was convex, all new curves are inside it and do not intersect any other curves.

The orientation of these new curves is determined by the order-condition: xi should be

oriented so that it intersects first xi+1 (where xk+1 := v) and then xi−1 (where x0 := u). In

particular this means that the private region Sxixi+1
contains the tail of xi and the head of

xi+1, and hence satisfies the condition on private regions.

It remains to check that the order-condition is satisfied for u. Since Suv contained the

tail of u, this means that x1 becomes the first curve to be intersected by u, which is correct

since x1 is the clockwise neighbour of u on the outer-face. Likewise one argues that the

order-condition holds for v. Hence all conditions hold, and after repeating for all ears we

124

u

v

C

(a) The base case.

u v

x1

x2 x3

xk

uv

C

x2

x1

xk v′u′

(b) Adding chords for an ear for k = 2.

Figure 6.7: Illustration for the proof of Theorem 6.5.

125

u

S

v u

S

v u

S

v

(a)

u

S

v

(b)

Figure 6.8: Three types of private regions (three more can be obtained by flipping horizon-

tally), and the base case.

obtain an order-preserving representation as an intersection graph of chords of a circle.

6.3.2 B1-VPG representation

Now we create, for any outer-planar graph, a B1-VPG representation that is order-preserving

and outer-string. However, the ends will not be on a circle; instead they will lie on a

closed curve S that we maintain throughout the construction and that surrounds the entire

representation R without truly intersecting any curve. All vertices are 1-bend poly-lines

with slopes ±1 (after rotating by 45◦ this gives the B1-VPG representation); this allows us

to use an orthogonal curve for S. Figure 6.8 illustrates types of private regions that we

will use for this construction: Suv contains no bend of u or v, and it is an isosceles right

triangle whose hypotenuse lies on S.

Theorem 6.6. Every outer-planar graph G has a cyclically order-preserving outer-1-string

B1-VPG-representation R.

Proof. As before it suffices to prove the claim for 2-connected outer-planar graphs G. We

proceed by induction on the number of vertices, building R while adding ears. In the base

case, G is an edge (u, v) which can be represented by two 1-bend curves positioned and

oriented as shown in Figure 6.8b, which also shows the private region. We use a horizontal

segment for S (this can be expanded into a closed curve surrounding R arbitrarily).

For the induction step, let us assume that G was obtained by adding an ear P =

u, x1, . . . , xk, v at some edge (u, v), with u the counter-clockwise neighbour of v on the

126

u v

x
u v

S x
S'

uv

Sx
S'

Figure 6.9: Adding a single node if u and v have different slopes.

outer-face. After possible rotation the hypotenuse of the private region Suv is horizontal

with Suv above it. We distinguish cases:

1. u and v have different slopes in Suv and k = 1 (i.e. we add one vertex x).

We add a 1-bend curve x with the bend pointing downwards. See Figure 6.9, which

also shows the private regions that we define for (u, x) and (x, v). Curve x fits

entirely inside Suv by placing the bend in the interior of Suv and shortening u and

v appropriately so that the ends of x are vertically aligned with those of u and v.

We can now easily find a new curve S ′ by adding “detours” to S that reach the

hypotenuses of the new private regions. These detours are inside Suv and hence

intersect no other curves (since we shortened u and v). So the new curve S ′ is a

closed curve that surrounds the new representation as desired.

The orientation of x is again determined by the order-condition, and exactly as in

Theorem 6.5 one argues that this respects the order-condition at u and v, since our

choice of curve for x ensures that it crosses u after the crossing of u with v.

2. u and v have different slopes in Suv and k > 1 (i.e. we add at least two vertices

x1, . . . , xk.)

We add a path of 1-bend curves x1,x2, . . . ,xk with their bends at the top, and define

private regions as illustrated in Figure 6.10. Each curve xi is oriented as required by

the order-condition, and again one verifies the order-condition for u and v. We can

re-use the same S.

3. u and v have the same slope inside Suv.

127

u v

x1

x2 x3

xk

uv

S ...
x1 x2 x3 xk

u v

S...
x1x2x3xk

Figure 6.10: Adding 2 or more nodes if u and v have different slopes.

u v

x1

x2 x3

xk
u

v

S ...
x1 x2 x3 xk

u

v

S...
x1x2x3xk

Figure 6.11: Adding one or more vertices if u and v have the same slope. We only show

two of the four possible configurations.

We add a path of 1-bend curves x1,x2, . . . ,xk (possibly k = 1) with their bends at

the top, and define private regions as illustrated in Figure 6.11. Each curve xi is

oriented as required by the order-condition, and one verifies all conditions using the

same S.

The final representation of the whole graph is order-preserving due to the order-condition,

outer-string due to poly-line S, and B1-VPG (after a 45◦-rotation) since every curve has

one bend.

In our B1-VPG-representation, every vertex-curve is an ⑤❧ in one of the four possible

rotations ⑤❧, ❧⑤, ⑤❤, ❤⑤. (All four may be used, since private regions get rotated in Case 1.) It

is easy to create representations with ⑤❧ only if we need not be order-preserving (use

in Case 1) or need not be outer-string (see also Lemma 6.8), but finding an outer-string

order-preserving representation using only ⑤❧’s remains open.

128

v
v

Figure 6.12: Converting an ⑤❧-contact representation into a planar drawing with the same

order.

6.3.3 Beyond outer-planar graphs?

One wonders what other graph classes might have order-preserving 1-string representations,

preferably outer-string ones. We study this here for some graph classes. We start with the

series-parallel graphs that we saw in Section 5.1.2. We need an observation:

Lemma 6.7. Every graph G with an { ⑤❧}-contact representation has a cyclically order-

preserving 1-string representation for some planar embedding of G.

Proof. For any {⑤❧}-contact representation with true ⑤❧’s (neither rotated nor degenerated

into a horizontal or vertical line segment), we can create a planar drawing that matches the

order of touching-points along each ⑤❧. Namely, draw a point for v slightly above and to

the right of the corner of the bend in v. Connect v to all touching-points on v, and to the

two ends of v. Because every curve is an ⑤❧, the curves whose ends touch v all come from

the left at the vertical segment of v or from the bottom at the horizontal segment of v.

Therefore the added lines do not cross any curves and so give a planar drawing of G that is

clearly respected by the representation. Extending the ⑤❧’s slightly hence gives the desired

1-string representation.

Since series-parallel graphs have an { ⑤❧}-contact representation (Corollary 5.3), we have:

Corollary 6.8. Every series-parallel graph G has a 1-string representation using ⑤❧s only

that is cyclically order-preserving for some planar embedding of G.

129

It would be interesting to know whether this result can be extended to the planar

Laman-graphs, which have a B1-VPG-contact representation (see Lemma 5.4), but not

all ⑤❧s are necessarily in the same rotation and so it is not clear whether this is cyclically

order-preserving. Of particular interest would be planar bipartite graphs, which can even

be represented by horizontal and vertical touching line segments (see Lemma 5.1), but

again it is not clear how to make this order-preserving in the cyclic model2.

As for having the representation additionally being outerstring: this is not always

possible. Let H be the graph obtained by subdividing every edge in a K2,3; one verifies

that H is series-parallel. It is easy to see (Lemma 2.6) that H is not outer-string, since

K2,3 is not outer-planar. So H has no outer-string representation, much less one that is

1-string and order-preserving.

Observation 6.9. There is a series-parallel graph that is not an outer-string graph.

Now we turn to partial 3-trees. We showed in Theorem 6.3 that there exist planar 3-trees

(hence partial 3-trees) that do not have an order-preserving 1-string representation. We

now study some subclasses of partial 3-trees that are superclasses of outer-planar graphs.

Recall the definitions of IO-graphs an Halin graphs from Chapter 5. An IO-graph is a

planar graph G that has an independent set I such that G− I is a 2-connected outer-planar

graph O for which all vertices in I are inside inner faces of O. A Halin graph is a graph

that consists of a tree T and a cycle C that connects all leaves of T . Both types of graphs

are well-known to be partial 3-trees. In Chapter 5, we provided constructions of 1-string

{ ⑤❧}-representations for both Halin graphs and IO-graphs. Inspection of both constructions

shows that these respect the standard planar embedding (where O respectively C is one

face). Namely, for IO-graphs, the condition on the IO-private region guarantees that the

newly inserted vertex intersects its neighbours in order. For Halin graphs, all outerface

vertices have degree 3, and for those any order of neighbours is order-preserving. Inner

vertices may have a higher degree, but the order of unfinished rays ensures that they

intersect their children in order. We hence have:

2The very recent result by Gonçalves et al. [55] also implies that triangle-free planar graphs have a

contact representation using only ⑤❧’s. Hence, all such graphs (and in particular, planar bipartite graphs) do

have cyclically order-preserving 1-string representations.

130

Theorem 6.10. Every IO-graph and every Halin-graph has a cyclically order-preserving

1-string { ⑤❧}-representation.

In these constructions, the ends of the strings are not on the outer-face, and we now

show that this is unavoidable. This is obvious for Halin-graphs, since the subdivided K2,3

is an induced subgraph of a Halin-graph. As for IO-graphs, define the wheel Wn to be the

graph that consists of a cycle C = {v1, . . . , vn} with n vertices and one universal vertex c

connected to all of them. Let the extended wheel-graph W+
n be the wheel-graph Wn with

additionally a vertex wi incident to vi and vi+1 for i = 1, . . . , n (and wn+1 := w1). See also

Figure 6.13. Notice that W+
n is an IO-graph.

Theorem 6.11. For n ≥ 7, the IO-graph W+
n has no cyclically order-preserving outer-1-

string representation with respect to the embedding shown in Figure 6.13.

Proof. Assume for contradiction that it did, and consider the induced representation RW

of Wn. Let the naming of cycle C be such that c intersects v1, . . . ,vn in this order. Define

as before u[v, w] (for any 2-path v, u, w) to be the stretch of u between the intersection

with v and w. Now define R to be the region bounded by c[v1, vn] (which is almost the

entire curve c), as well as vn[c, v1] and v1[vn, c] (which exist since (v1, vn) is an edge). See

also Figure 6.13.

Consider vi for i = 3, 4, 5, which is adjacent to neither v1 nor vn. Then vi intersects

the boundary of R (because it intersects c[v1, vn] by assumption), but does not intersect it

twice, else it would intersect c twice or intersect v1 or vn. Hence one end of vi is inside

R while the other one is outside, and so not both ends of vi can be on the outerface for

i = 3, 4, 5.

This shows that Wn is not outer-1-string in the sense that for some vertex not both

ends of the curves are on the outerface. Now consider W+
n , and the vertices w3 and w4 that

were added at v4 when creating W+
n . Since w3 and w4 are adjacent to none of c, v1, vn, and

since the drawing is outer-string, both w3 and w4 (and therefore their intersections with

v4) must be outside R.

So walking along v4 starting at the end inside R, we encounter c and then one of

{w3,w4}. We assume that we encounter w3 before w4; the other case is symmetric (and

131

v1

v2

v3
v4

v5

v6

v7w1

w2

w3
w4

w5

w6

w7

c
v3

v1

v2
v4

v5

v6

v7

w3

w4

R

R′

Figure 6.13: An illustration for the proof of Theorem 6.11.

results in v5 having no end on the outerface). Consider the region R′ enclosed by v4[c, w4],

w4[v4, v5], v5[w4, c] and c[v5, v4]. Since w4 is outside R, so is R′. Curve v3 intersects δR′,

because it intersects v4, and this intersection must be on v4[c, w3] to preserve the order of

edges around v4 (and since we know that c,w3,w4 intersect v4 in this order). Curve v3

cannot intersect δR′ again, else it would intersect c or v4 twice or would intersect w4 or

v5, which it shouldn’t. Therefore one end of v3 is inside R′, which is outside R. The other

end of v3 is inside R. So neither end of v3 is on the outerface. Contradiction.

6.3.4 Order-preserving segment representations

Middendorf and Pfeiffer [74] showed that every B1-VPG representation that uses only

curves of shapes ⑤❧ and ⑤❤ can be transformed into a segment representation. We introduced

their claim as Lemma 2.5 in Section 2.2.2. Here we prove a stronger claim which also

stipulates that the transformation preserves the order of crossings along each curve. This

implies that graphs with linearly and cyclically order-preserving ⑤❧- and ⑤❤-representations

have corresponding order-preserving segment representations.

Lemma 6.12. Let G be a graph with a { ⑤❧, ⑤❤}-representation R. Then there is a string

representation S of G such that every curve in S is a line segment. Furthermore, for every

vertex v ∈ V (G), the order of intersections along segment vS in S matches the order of

132

intersections along curve vR in R. The slope of vS is negative if vR is an ⑤❧ and positive

otherwise.

Proof. The proof is exactly the one of [74], but we clarify the invariants to argue that order

is preserved.

By Lemma 2.4, we can assume that we are given a representation R where all segments

have distinct coordinates. We can now order the curves in R according to the x-coordinates

of their vertical segments and denote them by r1, . . . , rn in this order left to right.

We call a curve in R right-visible if its horizontal segment can be extended rightwards

“to infinity” without intersecting any other curve. See also Figure 6.14(a). We now prove

the lemma by showing the following stronger claim:

Claim. The graph represented by R has a segment representation S enclosed in a rectan-

gular area Θ such that:

• Curve vS touches the right border of Θ if and only if vR is right-visible. Furthermore,

the order of touch points along the right border of Θ matches the order of y-coordinates

of the horizontal segments of right-visible curves in R.

• For every vertex v ∈ V (G), the order of intersections along segment vS in S matches

the order of intersections along curve vR in R.

• No segment of S is vertical. Furthermore, the slope of vS is negative if vR is an ⑤❧ and

positive otherwise.

We prove this claim by induction on the number of curves in R. For n = 1, construct S

using an arbitrary non-vertical segment with the appropriate (positive or negative) slope.

For n > 1, apply induction to construct a representation S0 enclosed in a rectangle Θ0

for the graph represented by r1, . . . , rn−1. We will now construct S by placing segment rn

into S0. Observe that all curves that intersect rRn in R are right-visible in R − rRn (since

rn has maximal x-coordinate and no points to the left of its vertical segment, see also

Figure 6.14). Thus, they touch the right border of Θ0, and the order of the touch points

133

matches the order of intersections along the vertical segment of rRn . Denote the top-most

curve that intersects rRn by t and the bottom-most curve by b.

Extend all the segments in S0 that touch the right border of Θ0 by a small amount so

that they go beyond the border of Θ0, but do not create any additional intersections among

themselves. If rRn has the shape of an ⑤❧, insert a segment rSn with an appropriate negative

non-vertical slope so that it intersects all the desired curves (starting with t and ending

with b) to the right of Θ0. Align the right end of rSn with the ends of all the other curves

and observe that there is new rectangle Θ that encloses S and such that all the right-visible

curves of R touch Θ, and all the other conditions hold. Proceed analogously if the shape of

rRn is ⑤❤.

Note that one can adjust to proof to show that if the representation is outer-string,

so is the constructed segment representation. Applying Lemma 6.12 to Corollary 6.8 and

Theorem 6.10, we get:

Corollary 6.13. Every series-parallel, IO- and Halin graph has a segment representation

that is cyclically order-preserving for some planar embedding.

The resolution delivered by Lemma 6.12 is very large: with every added vertex, the

region to the right of Θ into which we can extend segments without creating intersections

gets much narrower, and so we need very steep slopes. In general, this is expected since

recognizing Seg is ∃R-hard [69]. But here we are studying a subclass of Seg, namely,

graphs that have { ⑤❧, ⑤❤}-representations. Can we find segment representations for them with

polynomial-sized coordinates, at least for the special cases listed in Corollary 6.13?

6.4 Selectively order-preserving representations

There are two drawbacks of both the aforementioned order-preserving models. Firstly,

neither linear or cyclic order preservation is defined for k-string graphs with k > 1. Secondly,

string representations derived from contact representations by extending curves are not

order-preserving, even though every contact representation gives rise to a very natural

embedding of a planar graph. Thus, we propose a third model of selective order-preservation.

134

rn

righ
t-v

isib
le

a

b

c

d

e

f

(a)

a

b

c

d

f

e

rn

(b)

Figure 6.14: (a) An illustration of right-visible curves. (b) Adding rn to the segment

representation.

Assume that a string representation of a graph is given. Thicken each curve slightly, and

consider the cyclic order of intersections while walking around the thickened string. The

representation is selectively order-preserving with respect to a planar embedding of the graph

if the cyclic order of neighbours around a vertex forms a subsequence of the intersections

encountered while walking “around” its string. With this, any contact representation

becomes a selectively order-preserving 1-string representation after extending the curves a

bit. Since this model’s restriction is weaker, all our positive results transfer, but the proofs

of the negative results no longer hold.

Corollary 6.14. (1) Planar bipartite graphs have selectively order-preserving segment

representations.

(2) Laman graphs have selectively order-preserving B1-VPG representations.

(3) Series-parallel, outerplanar, Halin graphs and IO-graphs have selectively order-preserving

⑤❧-representations and segment representations.

(4) Planar graphs have selectively order-preserving B3-VPG 2-string representations.

135

Proof. Planar bipartite graphs have contact representations of segments by Lemma 5.1 [38].

Laman graphs have B1-VPG-contact representations by [65]. Claim 2 was shown in

Lemma 6.12 and Corollary 6.13.

Planar graphs have contact representations using T-shapes [39]. By tracing each T-shape

with a curve, we can create a B3-VPG touching representation and Claim 4 holds.

We conjecture that not all planar graphs have selectively order-preserving 1-string

representations, but this remains open.

6.5 Conclusions

In this chapter, we studied 1-string representations that respect a planar embedding. We

have introduced three models of order preservation. The first one takes an arbitrary order

of crossing along each curve as an input and asks if a representation with this order of

crossings exists. We showed that given such an order, it is possible to decide in linear time

if the representation exists. Then we defined an extended model that asks for an order-

preserving 1-string representation given a planar embedding of a graph. This is equivalent

to asking for a linear order-preserving representation, regardless of where the break point

in the rotation scheme around each vertex is. This is the natural model for planar graphs,

and the problem is likely NP-hard (see Section 8.5 for the discussion). We showed that

such representations exist for outer-planar graphs, series-parallel, IO-graphs and Halin

graphs, but there are planar graphs (even planar 3-trees) without such representations.

Lastly, we introduced an order-preserving model for representations that are not necessarily

1-string. The model is capable of capturing the order of crossings induced by the contact

representations. All planar graph have such representations, but bipartite planar graphs,

Laman graphs, series-parallel graphs and Halin graphs have representations using shapes of

small complexity.

As for open problems, what other graph classes have cyclically order-preserving 1-string

representations? A natural candidate to investigate would be the 2-outer-planar graphs, for

which Lemma 6.2 cannot be applied since a triple-stellation is never 2-outer-planar. Other

interesting candidates would be planar 4-connected graphs.

136

Chapter 7

String Representations with Many

Crossings

In this chapter, we investigate graphs that have string representations, but in any repre-

sentation, some curves must intersect more than once. In other words, what graphs are in

String, but not in 1-String?

The results in this section are not yet published.

7.1 Exponential construction

While having curves intersect multiple times may be a convenient method of constructing

string representations (see for example the construction of string representations for planar

graphs by [40], Section 2.2), there are graphs that require such representations, as is implied

by the following result of Kratochv́ıl and Matoušek from 1991 [70].

Theorem 7.1 (Kratochv́ıl, Matoušek [70]). There are graphs that require an exponential

number of crossings in any string representation.

As we build on top of their construction, we briefly review it here.

137

Proof of Theorem 7.1. Consider the graph depicted in Figure 7.1 obtained by subdividing a

2× 2 grid so that the “middle horizontal path” is formed by vertices A, uk, uk−1, vk, . . . , u3,

u2, v3, u1, v2, u0, v1, B. Furthermore, connect every vertex ui, i > 0 to one more subdivision

vertex on the lower boundary of the grid, and subdivide the “upward edge” from u0 with

a vertex b. Denote the middle vertex on the top boundary of the grid by a. Let us call

this graph H ′
k. Notice that since H ′

k is a subdivision of a 3-connected planar graph, it has

unique embedding in the plane (up to the choice of the outer face). Finally, connect every

pair ui, vi, i > 0 with an edge and call the result Hk. Now define an abstract topological

graph (AT-graph—recall that this means that we specify exactly which edges must intersect,

see Section 2.2.4) that

• requires intersections of ab with uivi for every i ≤ k;

• forbids any intersections of u0b, and any intersection for all edges incident to outer-face

vertices with the exception of v1B and ab

• requires intersections of every edge uivi with some edges in the form of urvs as needed

in order to guarantee realizability (see Figure 7.1).1

By induction on i, one can now prove that the number of intersections of ab and uivi in

such a realization is at least 2i−1.

Recall that At-Realizability reduces to string graph recognition (Lemma 2.7). Ap-

plying this, we construct a string graph G (shown in Figure 7.2) for which any string

representation can be turned into a correct drawing of the AT-graph Hk by contracting

some curves. This contraction adds at most a quadratic number of intersections. Since Hk

requires an exponential number of intersection, therefore, so does any string representation

of G.

Recall that in Section 5.3 we investigated graphs with no B1-VPG representations. Note

that specifically for the graph Hk with sufficiently large k shown in Figure 7.1, the realization

1We are being purposely vague here. In [70], the authors in fact work with the concept of so-called weak

At-Realizability where the intersections are allowed, but not required. Even when “allowing but not

requiring” all the possible intersections between edges uivi and urvs, i, r, s ≤ k, 2i−1 intersections between

ab and uivi are still necessary.

138

a

b

u0

v2

v1u1

v3u2

u3

A B

Figure 7.1: An AT-graph Hk that requires an exponential number of intersections in its

realization. We show the graph for k = 3.

requires 4 crossings between edges (u3, v3) and (a, b), hence the graph is not 3-string. As

two B1-VPG curves cannot intersect more than twice, we have B1-VPG ⊆ 2-String and

so the graph is not a B1-VPG graph. Unfortunately, and as expected, this graph is not

planar ({u1, v1, u2, v2, u3, v3} can be used to find a K3,3-minor; we proved in Theorem 3.1

that all planar graphs are 1-string graphs), but we will use a similar graph later to create a

1-planar graph without a B1-VPG representation.

7.2 Outer-string graphs

The representation in Figure 7.2 is not outer-string and one can argue that the graph has no

outer-string representation. This poses the question of whether there are outer-string graphs

that require an exponential number of crossings in any outer-string representation. As there

are algorithms that utilize outer-string representations (see [63, 61] and also Chapter 4),

a negative result would be extremely interesting from an algorithmic perspective. In this

section, we answer the question affirmatively. Thus, we present a construction for outer-

string representations inspired by the one of Kratochv́ıl and Matoušek which shows that

exponential size is sometimes required.

139

a

b

u0v2 v1u1u2

u3

A Bv3

(a) The graph G3 derived from H3 in Figure 7.1 by applying the reduction from At-

Realizability to recognition of string graphs (Lemma 2.7).

a

b

u0
v2 v1u1

v3u2
A B

u3

(b) A string representation of G3 derived from the AT-realization of H3 in Figure 7.1.

Figure 7.2: A graph with no 3-string representation.

140

First, we show that there is a correspondence between outer-string representations of

a graph, and string representations of what we call its “subdivided apex graph.” During

our construction, we will be working with subdivided apex graphs, which will make our

arguments simpler. Let G be a graph. The apex graph H of G is the graph obtained from

G by adding a new vertex a connected to all vertices in G. The subdivided apex graph of G,

denoted by G+, is obtained from H by subdividing every edge incident to a. See Figure 7.3.

The following characterization is very simple, but surprisingly enough appears to be

unknown. The closest related result is by Kratochv́ıl [67] who argued that a graph G is

outer-string if and only if all supergraphs H where H −G is a clique are string graphs.

Lemma 7.2. Graph G is an outer-string graph if and only if its subdivided apex graph G+

is a string graph.

Proof. Assume that we have an outer-string representation R of G. Then we can add a

curve a for the apex vertex into the exterior of R and connect it to the endpoint of every

curve of R with a curve that also lies in the exterior of R. This is a string representation of

G+.

For the converse, let R′ be a string representation of G+. All the neighbours of the

apex vertex a have degree 2 (those are the subdivision vertices), and we can therefore

assume that their curves intersect a exactly once [68, p. 68]. So, curve a has precisely one

intersection with the curves of its neighbours.

Consider some vertex w of G and the place where w intersects sw, where sw is the

subdivision vertex of edge (w, a) of the apex-graph (note that the intersection of sw and w

can be assumed to be unique as sw has degree 2). At this point, bend and re-reroute w

along sw to create a contact with a. Formally, consider the boundary B of the set of points

S with distance at most ε to sw for a sufficiently small ε. Bend w at its first intersection

with B and continue on B to the closest point B ∩ a. Then continue on a to the other

intersection B ∩ a, and bend and lead w on B back to the other intersection of B ∩ w.

This creates no new intersections since sw is only adjacent to a and w. Since every curve

now attaches to a, thickening a and taking the boundary of the object creates a closed

disk D with the entire string representation of G outside of D and every curve intersecting

141

(a) (b) (c)

Figure 7.3: (a) A graph G. (b) The apex graph of G. (c) The subdivided apex graph G+.

D. Flipping D inside out, i.e., treating it as an outerface of the resulting combinatorial

structure, and deleting a produces a representation of G where every string w has some

point on the outerface. Tracing around w (in the sense similar to the above), we can replace

it with another curve that intersects the same set and has an end on the outerface, so this

gives an outer-string representation of G.

We first wish to point out a corollary of the results presented in this section. While it

was long known that string graph recognition is NP-hard [68], proving that it is in NP was

a long-standing open question until proved by Schaefer [78]. Since, for any graph G, we

can construct the subdivided apex graph G+ in polynomial time and the test whether G+

is a string graph is in NP, the problem of outer-string graph recognition lies in NP.

Corollary 7.3. The recognition problem of outer-string graphs is in NP.

Now we construct a graph that requires many intersections in any string representation.

This is not a new result (see Theorem 7.1), but our graph is different, and can be used

to prove a similar result for outer-string representations later. Fix an arbitrary integer

k, and set K = 20k + 30. Let C = c0, c1, . . . , cK−1 be a cycle of length 20k + 30 (refer

to Figure 7.6a).2 We assign labels u0, . . . , uk, v0, . . . , vk to the vertices of C as follows.

Set u0 := c0, u1 := c10, v0 := c20, v1 := c40. For any i > 1, let ℓ be such that vi−1 =

2We use this cycle length for ease of notation; a cycle of length 8k + 8 would be sufficient.

142

cℓ. Then, set ui := cℓ−10 and vi := cℓ+20. In other words, the order of vertices along

cycle is u0, u1, v0, u2, v1, u3, v2, . . . , ui, vi−1, ui+1, vi, . . . , uk, vk−1, vk, with 9 other vertices of

C between any two of them.

For every pair of vertices (ui, vi), we add two new vertices xi, yi so that

• xiyi is an edge;

• xi is connected to ui and yi is connected to vi; and

• yj is connected to every xi for i < j.

Let us call the resulting graph Gk. The subdivided apex graph of Gk is denoted by G+
k ,

the apex vertex by a, the common neighbours of a and vi (or ui) by svi (or sui , respectively).

Figure 7.6b illustrates an outer-string representation of Gk, which can be converted into a

string representation of G+
k (see Lemma 7.2). Note that yk and x0 intersect 2k−1 times.

We now argue that this is required.

Theorem 7.4. In any string representation of G+
k , curve yk intersects curve x0 at least

2k−1 times.

Proof. Fix a string representation of G+
k . Delete from it all strings of subdivision vertices

between the apex vertex a and c2i+1, for some i; these will not be needed. In consequence,

c2i+1 now intersects only two other strings (c2i and c2i+2) and as before, we may hence

assume that c2i+1 has exactly two such intersection points and no more [68, p. 68]. So, for

any j, we have a unique point in cj ∩ cj+1 (addition for all vertices in C is mod K).

Recall that u[v, w] denotes the stretch of u between the intersection with v and w and

define the closed curve C to be
⋃K

j=1 cj[cj−1, cj+1]. Observe the following:

• The curve a of the apex vertex is disjoint from C and hence resides inside or outside.

By symmetry, we may assume that a is outside C.

• For any i ≤ j, there must exist at least one point in xi ∩ yj since (xi, yj) is an edge.

We claim that any such point is inside C. If it were outside C, then we could find an

outer-planar drawing of K4 as follows (see Figure 7.4):

143

– Follow curve xi from xi ∩ yj until the nearest point in xi ∩ ui. This point may

or may not be on C; if it is not then follow ui from here to the nearest point

on C. Place vertex A here and note that A ∈ ui ∩C. Also, A is connected to

xi ∩ yj along a curve within xi ∩ ui that does not cross C.

– Similarly, follow yj to yj ∩ vj and (if needed) along vj until a point on C. Place

B here and note that B ∈ vj ∩C and B connects to xi ∩yj along a curve within

yj ∩ vj that does not cross C.

– Say ui = c2s for some s and vj = c2t for some t. We have |2t−2s| ≥ 10. Let s2s+2

and s2t+2 be the subdivision vertices of edges (a, c2s+2) and (a, c2t+2). Follow a

from a∩ s2s+2 to an a∩ s2t+2 and extend the curve along c2s+2 to a point D on

C ∩ c2s+2. Also extend the curve along c2t+2 to a point E on C ∩ c2t+2.

– We now have vertices A,D,B,E on curve C, and they occur in this order since

A,D,B,E lie on c2s, c2s+2, c2t, c2t+2, and C visits these strings in order of index.

So, we can use C to draw a circle A−D−B−E −A. But we also have a curve

from A to B (along xi and yj) and a curve from D to E (along a). Both curves

are outside C if a and xi ∩ yj are outside C, leading to an outer-planar drawing

of K4, a contradiction.

• Thus for any xi, at least part of its curve is inside C. But it also must intersect a, so

it must have points outside C. So, xi must intersect C, which is possible only at ui.

Similarly yj intersects vj at a point on C for all j.

• As we walk along C, the intersections with curves in {xi,yj} occur in the same order

as cycle C contains the corresponding neighbours, i.e., the order is x0, x1, y0, x2, y1,

x3, y2, . . . ,xk, yk−1, yk. This holds because for each v ∈ {xi, yj|0 ≤ i, j ≤ k} there

is exactly one w ∈ C adjacent to v, so v must cross C exactly at w, and C lists the

curves of C in order.

Since all relevant intersections happen inside C, we will in the following ignore all parts

of curves outside C. Now we are almost ready to prove by induction on i that yi intersects

x0 at least 2i−1 times, but we need to show a slightly stronger claim for the induction to

work. Let R′
i be any representation that satisfies the following:

144

a

A BD E

xi
yj

ui
vj

Figure 7.4: An illustration of finding the outer-planar embedding of K4 for the proof of

Theorem 7.4.

• It has a cycle C with all curves on or inside it.

• It has curves xj and yj (for 0 ≤ j ≤ i) that intersect C in order x0, x1, y0, x2, y1,

x3, y2, . . . ,xi, yi−1, yi.

• Curves xj and yj intersect for all 0 ≤ j ≤ i.

• There may or may not be intersections of yj with xr for r < j.

• No other curves intersect.

Note that R induces such a representation by omitting strings xi+1,yi+1, . . . ,xk,yk and

everything outside C. We now show the following claim:

Claim 7.5. In any such representation R′
i, curve yi intersects x0 at least 2i−1 times.

First, consider the base case i = 1 (see Figure 7.5(a)). The order in which curves

intersect C is x0,x1,y0,y1, and their combined curve x0 ∪ y0 splits C into two parts.

Curves x1 and y1 intersect C in different parts. To create an intersection point x1 ∩ y1,

145

x0

y0

x1

y1

(a) The base case.

xi+1

yi

xi
yi+1

(b) Two possible routes for yi the induction step.

Figure 7.5: In the base case, y1 must cross x0. In the induction step, a route for yi+1 gives

two possible routes for yi to xi.

one of them must cross paths y0 ∪ x0. Such a crossing must be between y1 and x0 (no

other crossings are allowed). So, y1 intersects x0 at least once as desired.

Assume now that the claim holds for some i. Curve yi+1 is separated from curve xi+1

by xi ∪ yi . Thus, curve yi+1 has to intersect xi on its way to xi+1. On the way to xi,

it has to create at least 2i−1 intersections with x0, otherwise we could re-route yi and

use fewer crossings between yi and x0. More precisely (refer to Figure 7.5(b)), yi could

be re-routed to stay in the proximity of the cycle C until it reaches vi+1 (follow curves

vi = cj, cj+1 . . . cs = vi+1), and then follow yi+1 until reaching xi. Along this new route

(following yi+1) curve yi might intersect neighbours of yi+1, but all those neighbours are

allowed to be neighbours of yi as well, so this is a valid representation with less than 2i−1

points in yi ∩x0. This contradicts the induction hypothesis.3 So, yi+1 intersects x0 at least

2i−1 times on the way from C ∩ yi+1 to yi+1 ∩ xi.

On the way from xi to xi+1, curve yi+1 needs to create another 2i−1 crossings with x0,

otherwise we could re-route yi and use fewer crossings as follows: yi stays in the proximity

of the cycle curves until it reaches ui+1 (follow curves vi = cj, cj−1 . . . cs = ui+1), and then

follows xi+1 and yi+1. Thus yi+1 crosses x0 at least 2i times as desired.

3It is true, but not obvious, that along the new route, yi must cross all of xi−1, . . . ,x1 as well. Rather

than arguing this, we switched to the representation R′

i
where such crossings are allowed, but not required.

146

In consequence, we have:

Theorem 7.6. For any k ≥ 1, there exists a graph Gk with O(k) vertices that has an

outer-string representation, but any outer-string representation of Gk requires two strings

to intersect at least 2k−1 times.

Proof. We use graph Gk with 22k + 32 vertices as defined earlier. By Theorem 7.4, any

string representation of G+
k requires at least 2k−1 intersections between yk and x0. Since

any such representation can be obtained from an outer-string representation of Gk without

changing any string of Gk (see the proof of Lemma 7.2), any outer-string representation of

Gk requires at least 2k−1 intersections between yk and x0.

7.3 1-planar graphs

In the previous section, we presented graphs where any outer-string representation must

have curves that intersect more than once. Here we show that some of those graphs (and

even their subdivided apex graphs) are 1-planar graphs, i.e., they can be drawn in the

plane such that every edge is crossed at most once. Therefore, 1-planar graphs are not in

1-String. This is an interesting result because the class of 1-planar graphs is very close to

the class of planar graphs, which is a subclass of 1-String.

Theorem 7.7. There are 1-planar graphs that are string graphs but do not have 1-string

representations.

Proof. Let G+
k be defined as in the previous section and recall that they are string graphs.

By Theorem 7.4, any string representation of graph G+
2 requires that y2 and x0 intersect

at least twice. A 1-planar embedding of G+
2 is shown in Figure 7.7.

Theorem 7.7 raises many questions about string representations of 1-planar graphs,

which is a graph class that has been paid a lot of attention recently. For instance, Thomassen

in 1988 characterized 1-planar graphs that have straight line 1-planar drawings [81]. Di

Giacomo, Liotta and Montecchiani [52] researched the straight line drawings of 1-planar

147

v0 = c20v1 = c40v2 = c60 u2 = c30

v3 = c80

u3 = c50
u1 = c10

su0su1su2 sv2su3 sv3 sv1

y0y1y2y3

x0x1x2x3

u0 = c0

sv0

(a) The graph G+

3 . The apex vertex a is not shown.

v0v1v2 u2v3 u3 u1

y0y1y2
y3

x0

x1
x2x3

u0

(b) The outer-string representation of G3.

Figure 7.6: A representation of an outer-string graph that requires exponentially many

crossings and the corresponding subdivided apex graph.

148

v0

v1v2

x0

u2 u1
u0

x1

x2

y0

y2

y1

Figure 7.7: A 1-planar embedding of G+
2 . The apex vertex is not shown, but all its incident

edges end on the outer-face, so it can be added without more crossings.

149

graphs with limited number of edge slopes. The visibility representations of 1-planar graphs

were investigated e.g. by Brandenburg [22] and Biedl, Liotta, and Montecchiani [16]. For

work on the recognition algorithms, see e.g. Auer et al. [9]. A recent survey on 1-planar

graphs was published by Kobourov et al. [64]. We are not aware of any research on string

representations of 1-planar graphs so far, and none of the aforementioned results seems to

trivially imply the existence of string representations for 1-planar graphs, or the opposite.

In the rest of this section, we provide some initial results on this topic.

First, we should point out that while any planar graph is a string graph, this is not the

case for 1-planar graphs: a full subdivision of any graph, such as K5, that is not planar but

can be drawn with 1 crossing is a 1-planar graph, but not a string graph (see Lemma 2.1).

Furthermore, by subdividing the edges of any non-planar graph sufficiently many times,

one can obtain a 1-planar graph. As the property of “not having a string representation” is

closed under taking subdivisions (recall Observation 2.3), any 1-planar graph obtained by

subdividing edges of a graph that is not a string graph is not a string graph either.

Observation 7.8. There are 1-planar graphs without string representations.

Since we know that some, but not all 1-planar graphs have string representations, one

naturally wonders what graphs are simultaneously string and 1-planar, but not planar.

Let H be a 1-planar graph with a fixed 1-planar embedding (i.e., the rotation scheme

and edge crossings), and let x be a crossing in H. Let M be the four endpoints of the edges

involved in the crossing x. The subgraph H[M] induced by M in H is called a kite of x if

it is isomorphic to K4. A non-crossed edge of H[M] is called a kite edge of the crossing x.

See also Figure 7.8.

Theorem 7.9. Let G be a 1-planar graph. If G has a 1-planar embedding such that every

crossing has a kite edge, then G is a string graph.

Proof. First, note that if G has an embedding with a kite edge for every crossing, it has

another such embedding in which no kite edge is crossed. Such an embedding can be

constructed be rerouting the crossed kite edges through the vicinity of their crossings.

Observe that such a rerouting does not remove any of the kite edges and does not create

any new crossing, so the resulting embedding Γ still contains a kite edge for every crossing.

150

∈ M ∈ M

∈ M ∈ M

x

kite edge

(a) A crossing with a kite edges in a 1-

planar graph.

(b) Using the kite edge to construct a string

representation.

Figure 7.8: Constructing a string representation of a 1-planar graph with kite edges by

tracing along the edges in the vicinity of a crossing. As the kite is represented at the

crossing, it does not need to be traced again.

Having constructed Γ, we can construct the string representation of G by tracing along

edges in incident to each vertex in Γ (similarly to the construction of Figure 2.1 for planar

graphs). In order to trace around edges that cross, the presence of a kite edge uv allows

the curves u,v to intersect (see Figure 7.8). Curves u and v can thus reach the neighbours

that they are connected to via a crossed edge.

Note that the representation constructed in the proof of Theorem 7.9 is a 4-string

representation with no restrictions on the shape of the curves. We showed in Theorem 7.7

that there are 1-planar string graphs that do not have 1-string representations. One could

ask if the presence of a kite edge can guarantee that a 1-planar graph has a 1-string

representation. This is not the case. Figure 7.9(a) shows a 1-planar graph with a single

kite edge for every crossing. Note that the graph is very similar to the graph in Figure 7.2a

(for k = 2), but some edges are missing.

Lemma 7.10. The graph G depicted in Figure 7.9 is a string graph with a 1-planar

embedding where all crossings have a kite edge, but G does not have a 1-string representation.

Proof. A 1-planar embedding of the graph with kite edges is shown in Figure 7.9(a). Now fix

any string representation of G−x. Observe that G−x is a full subdivision of a 3-connected

151

planar graph. By contracting the curves that represent vertices of degree 3 in G− x into

points, we obtain a planar drawing of a subdivision of a 3-connected graph which is unique

by Whitney’s theorem [86]. Thus, the “faces” of the string representation in Figure 7.9(b)

can be found in any string representation of G − x. Especially, in any representation,

curves u1,v1 and w1 are separated from each other by paths formed by segments of curves

a,b, c,y,h, i, j and a,b, c,d, e, f ,g. Curve x has to cross each of the paths at least once

and the only allowed crossing point is the segment of c. Thus, c and x intersect at least

twice.

Thus, the presence of kite edge is not sufficient to guarantee the existence of 1-string

representations. However, we can show that if all kite edges are present, then we can

provide a constant upper bound on the number of bends and intersections needed.

Theorem 7.11. Let G be a 1-planar graph with all 4 kite edges for every crossing. Then

G has a B16-VPG 4-string representation.

We postpone the proof Theorem 7.11 to the end of this chapter as we need to build

some preliminary notion, and also wish to take a detour in order point out a relationship

to the results presented in Chapter 4.

A 1-visibility representation of a graph displays each vertex as a horizontal vertex-

segment, called a bar, and each edge as a vertical edge-segment between the segments of

the vertices, such that each edge-segment crosses at most one vertex-segment and each

vertex-segment is crossed by at most one edge-segment. See also Figure 7.10. A graph is

1-visible if it has such a representation.

Lemma 7.12 (F. Brandenburg [22]). If G is a 1-planar graph with a 1-planar embedding

that has all four kite edges for every crossing, then G has a 1-visibility representation where

every crossing is represented as shown in Figure 7.10.

Recall the definition of a single-vertical representation of a graph from Chapter 4: A

single-vertical object is a connected set S ⊂ R
2 of the form S = s0∪ s1∪ · · · ∪ sk, where s0 is

a vertical segment and s1, . . . , sk are horizontal segments, for some finite k. A single-vertical

representation is an intersection representation of such objects.

152

u1 v1 w1

x

y

a
b

c

d

e

f

g

h

i

j

(a) A 1-planar embedding of the graph.

u1 v1
w1

a
b

c d

e

f

g

y
h

i

j

x

(b) An illustration of its string representation.

Figure 7.9: A 1-planar graph that does not have a 1-string representation.

153

f
f

d

c

b

a

c

d

b

a

(a) (b)

Figure 7.10: The two ways of representing a crossing or edges (a, c) (the visibility line is

shown in red) and (b, d) (the visibility line is shown in blue) in a 1-visibility representation

of a 1-planar graph. Figure based on [22].

We can show the following:

Theorem 7.13. Let G be a 1-planar graph with all 4 kite edges for every crossing. Then G

has a single-vertical representation such that every vertex object consists of a single vertical

segment and at most 4 horizontal segments.

Proof. The edges of every 1-planar graphs can be partitioned into a forest and a planar

graph [1]. The edges of the planar graph be further partitioned into 3 forests [37]. Thus,

every 1-planar graph can be partitioned into 4 forests and we can orient the edges so that

every vertex is incident to at most 4 incoming edges. Assume that we have fixed such

an orientation of G. Construct a 1-visibility representation of G using Lemma 7.12. For

every vertex bar bv, we can add k ≤ 4 vertical segments that connect it to the bars of

its k incoming neighbours in order to create all incoming edges as shown in Figure 7.11.

Every vertical segment is positioned along the visibility line that connects the two bars.

The horizontal segment is positioned in the center of the bar. As all the kite edges exist,

all the created intersections are allowed. Rotating the representation by 90◦, we obtain a

single-vertical representation of G.

154

d

c

b

a

d

c

b

a

Figure 7.11: The possible locations of vertical segments connecting the bars. The segments

are added based on the orientations of edges.

We can now also use the single-vertical representations to provide a Bk-VPG 4-string

representation:

Lemma 7.14. If G has a single-vertical representation where objects have at most k

horizontal segments that end on the vertical line (i.e., attach but do not cross it), then G is

a B4k-VPG graph.

Proof. Assume that a single-vertical representation R with at most k horizontal segments

in each object is given.

Then, for every vertex v, trace around the corresponding object Sv with a curve v. See

Figure 7.12 for an illustration. The vertical segment of Sv will become part of v. For a

horizontal segment s, we bend v rightward or leftward, follow s to its very end (this is a

point of contact with another curve), create a proper intersection with the other curve, add

two bends and lead v along s back and to the next horizontal segment.

As tracing each vertical segment adds 4 bends and there are at most 4 of them, we get

at most 16 bends for each curve.

Now we can prove Theorem 7.11:

Proof of Theorem 7.11. If we start with the single-vertical representation of Theorem 7.13,

then the objects of two vertices v and w intersect at most 3 times: once for edge (v, w), once

155

a

b

c

d

a

b

c

d

Figure 7.12: Tracing around objects in a single-vertical representation to produce a string

representation.

(perhaps) for some edge (x, v) whose segment intersects the bar of w, and once (perhaps)

for some edge (y, w) whose segment intersects the bar of v. The latter two can exist

only if (v, w) was a kite edge, hence the vertical bar did not cross vertex-segments. We

can then remove the intersection for edge (v, w) by removing that vertical bar, yielding

a single-vertical representation where any two objects intersect at most twice. Any such

intersection yields two crossings of the corresponding strings, hence we obtain a 4-string

representation.

156

Chapter 8

Future Directions

In this work, we investigated string representations with a focus on restricting the shapes

of the curves, number of bends, number or intersections between two curves, and order of

intersections along curves. In this chapter, we point out questions that remain open, and

suggest directions for the future work in this field.

8.1 Graphs with no string representations

We know that a full subdivision of K5 and K3,3 are not string graphs (and neither is any

full subdivision of any non-planar graph). As string graphs are closed under taking induced

minors, any graph G that contains an induced minor H that is not a string graph is not a

string graph either. However, are those the only graphs that are not string graphs? No

other examples of graphs that are not string graphs are known.

We think that if a graph does not contain a full subdivision of a non-planar graph as

an induced minor, then it is a string graph. Note however that given a certificate, such a

property can be verified in polynomial time. This would situate the recognition problem of

string graphs in co-NP. However, as the problem is known to be NP-complete, which would

imply that NP = co-NP. Thus, this question is especially interesting from the theoretical

perspective.

157

One can quickly “fix” 1-subdivisions of K5 and K3,3 to become string graphs by adding

an edge that connects a single pair of the subdivision vertices. Such an edge addition will

produce a string graph. This can be argued using our results about 1-planar graphs: such

a graph has a 1-planar embedding in which the added edge is a kite edge for the crossing

(see Theorem 7.9). So, a related question is:

Question 8.1. Given a graph G that is not a string graph, what is the minimum subset of

edges that needs to be added to G in order to obtain a supergraph that is a string graph?

Can one characterize such supergraphs of graphs without string representation?

This question was proposed before by Bokal et al. in [19] who called this the string

crossing number.

8.2 B1-VPG and segment representations

Many research questions investigated in this thesis were motivated by the question whether

planar graphs have {⑤❧, ⑤❤}-representations. For instance, in Chapter 3, we proved that

planar graphs have representations that are simultaneously 1-string and B2-VPG, and

in Chapter 5, we presented constructions for B1-VPG and {⑤❧, ⑤❤}-representations of some

subclasses of planar graphs. Shortly after submitting this thesis for public display, Gonçalves

et al. [55] proved that planar graphs have { ⑤❧}-representations. The technique in their paper

uses concepts similar to those in Chapter 3, i.e., splitting triangulated disks along edges,

constructing representations with prescribed layouts inductively and merging them together.

However, the actual way of splitting the graph is novel. Their result also provides a different

proof of Scheinerman’s conjecture due to the transformation given by Middendorf and

Pfeiffer [74] (see Section 6.3.4).

We consider the fact that ⑤❧-shapes are sufficient and the use of ⑤❤-shapes is unnecessary

to represent all planar graphs very surprising. This brings up the question of what is

the difference between the classes of graphs with { ⑤❧}- and {⑤❧, ⑤❤}-representations. It seems

believable that the two classes differ, however, we do not know of an example of a graph

with {⑤❧, ⑤❤}-representation that would require both the shapes. The technique of Chaplick

158

et al. [33] presented in Section 5.3 is not applicable as a single ⑤❧ intersecting a ⑤❤ cannot

separate a closed area of the plane.

Another research direction follows up on the fact that B1-VPG representations consisting

of curves with shapes ⑤❧ and ⑤❤ only can be transformed into segment representations (see

Section 6.3.4). One might wonder whether the converse holds, i.e., whether any graph in

Seg has an {⑤❧, ⑤❤}-representation. This is false, and in fact a stronger result holds:

Lemma 8.2 (Chaplick et al. [33]). For every k ≥ 1, Bk-VPG is not a subset of Seg.

For k = 2, an example of a graph that is not in Seg is the graph in Figure 5.15. However,

assume that we are given a graph that is known to be simultaneously in B1-VPG and Seg.

Given a segment representation, is it possible to produce a B1-VPG representation?

We can generalize this question to all Bk-VPG graphs. Lemma 8.2 stipulates that there

is no inclusion between Seg and Bk-VPG for any k. Recognition of both Bk-VPG and Seg

is NP-hard, but recognition of Seg is hard in the existential theory of the reals (so-called

∃R) [69] and thus appears to be harder. What about the recognition problem of Seg when

a Bk-VPG representation is given?

Conjecture 8.3. For any fixed k, testing whether a Bk-VPG graph G is in Seg is hard in

the existential theory of the reals even if a Bk-VPG representation is given.

Lastly, Felsner et al. [42] showed that line graphs of planar graphs have B1-VPG

representations. They also showed that complements of planar graphs, so called co-planar

graphs, have B19-VPG representations. However, it is not known whether 19 bends are

necessary, and this seems unlikely. The question whether every co-planar graph belongs to

Seg is open as well.

8.3 Outer-string graphs

The class of outer-string graphs proved useful from the algorithmic perspective in that some

hard problems become tractable on outer-string graphs. In Chapter 4, we showed how to

159

AT-realizability weak AT-realizabilityString graph

recognition

Outerstring

graph recognition

?

?

Figure 8.1: Known reductions between variants of At-Realizability variants and string

graph recognition.

use such algorithms for solving problems on outer-string in order to produce approximation

algorithms for single-vertical and B2-VPG graphs. The class of single-vertical graphs is

rich and includes B1-VPG graphs, planar graphs, 1-planar graph—see Theorem 7.13. This

shows that algorithmic results of any kind for outer-string graphs have potential to have

deep consequences, and thus are very interesting.

One of the interesting questions that concerns the class of the outer-string graphs itself is

the recognition. In Section 8.3, we provided a rather simple argument that the recognition is

in NP. However, the question whether outer-string graphs can be recognized in polynomial

time is open. Based on our private communication with J. Kratochv́ıl (the author of one

NP-hardness proofs for string graph recognition [67]) there is not a clear opinion about this

question. While Kratochv́ıl thinks that recognizing outer-string graphs should be NP-hard,

Middendorf and Pfeiffer (the authors of the other proof presented in [74]) apparently did

not share his opinion and felt that one should be able to describe outer-string graphs using

some forbidden obstructions.

The problem of string graph recognition is closely related to At-Realizability and

its weak variant. It is known that At-Realizability reduces to the recognition problem

of string graphs [68], and vice versa. Recognizing string graphs can also be reduced to

weak At-Realizability, i.e., the version of At-Realizability where edges that are

allowed to intersect do not have to intersect. This is the crucial ingredient in arguing that

the recognition problem of string graphs is in NP, because weak At-Realizability is in

160

NP [78]. But, does weak At-Realizability reduce to recognizing string graphs?1

We have shown that recognizing outer-string graphs reduces to recognizing string graphs.

However, we do not know if the opposite is true. Note that this would imply NP-hardness

of outer-string recognition. Furthermore, we are not aware of direct reductions between

At-Realizability and the weak version of the problem. Alternatively, can we prove a

version of At-Realizability NP-hard for which the reduction of Lemma 2.7 leads to

outer-string graphs?

8.4 1-planar graphs

To the best of our knowledge, there is no previous work on string representations of 1-

planar graphs. We showed that there are 1-planar graphs that are not string graphs, and

furthermore, that if a planar graph has at least 1 kite edge for every crossing, it is a string

graph (see Theorem 7.11). However, we find it very likely that there are some string graphs

that do not have a kite for every crossing, and yet, they have string representations.

Conjecture 8.4. There is a 1-planar string graph G such that G has no 1-planar embedding

in which every crossing is drawn with a kite edge.

More generally, we are interested in a characterization of kite edges that are truly

required for a string representation to exist.

We also showed that 1-planar graphs with at least 1 kite edge for every crossing have

4-string representations. We further provided an example of such a 1-planar graph that

does not have 1-string representation, but has a 2-string representation. Despite our efforts,

we were unable to produce a 1-planar graph that is a string graph and requires more than

2 intersections between two curves.

Conjecture 8.5. Every 1-planar string graph has a 2-string representation.

1It does, because weak At-Realizability is in NP while string graph recognition is NP-hard. But, is

there a simple, direct reduction, similar to the one in Lemma 2.7?

161

Furthermore, while the existence of a single kite edge for each crossing is sufficient to

show that a 1-planar graph is a string graph, we currently have no bound on the number of

bends needed for a Bk-VPG representation. Thus, it is an open question whether there are

1-planar string graphs with kite edges where the number of bends needed is unbounded.

We find it very unlikely and conjecture the following:

Conjecture 8.6. There is a constant k such that every 1-planar graph with at least 1 kite

edge for every crossing has a Bk-VPG representation.

We also proved that every 1-planar graph that has all kite edges for every crossing has

a 4-string B16-VPG representation. We do not have any evidence that either of the two, 16

bends or 4 crossings, is actually required if all kite edges exist. In fact, this appears to be

quite a large gap between planar graphs that are known to have representations that are

simultaneously 1-string and B2-VPG (see Theorem 3.1). Thus, we conjecture the following:

Conjecture 8.7. Every 1-planar graph with all kite edges for every crossing has a 2-string

Bk-VPG representation with k < 16.

As far as the complexity is concerned, testing whether a 1-planar graph is NP-hard.

One can provide a short argument by reduction from a string graph recognition. Given a

graph G with m edges, one can subdivide every edge with m− 1 vertices. The resulting

graph G′ has a 1-planar embedding and is a string graph if and only if G is a string graph,

and G′ is only polynomially larger than G. Thus, testing if G′ is a string graph cannot be

easier than testing if G is a string graph. The hardness of string graph recognition was

proved by Kratochv́ıl [68] by reduction from At-Realizability. It would be interesting

to know if there is a 1-planar variant of At-Realizability that would be NP-hard as

well. We do suspect that the graphs used in the hardness reduction by Kratochv́ıl in [68]

can be made 1-planar by subdividing the edges with additional vertices.

Lastly, there are a number of subclasses of 1-planar graphs and classes that related

to them and were not investigated here. Examples of such graph classes are fan-planar

graphs [60] or more generally, k-planar graphs. What can we show about their string

representations?

162

8.5 Order-preserving string representations

In Chapter 6, we presented three notions of order-preserving string representations: linear,

cyclic and selective. We presented both positive and negative results. The future work in

this field should explore more graph classes to see whether order-preserving representations

(in one of these models) exist or not. For instance, we showed that series-parallel graphs

have cyclic and selective order-preserving representations with respect to some planar

embedding. However, can they have such a representation with any planar embedding?

Secondly, following up on the complexity questions discussed in Section 8.3 what is the

complexity of testing whether an order-preserving 1-string representation exists? Given the

NP-hardness of the abstract graph realization problem [68, 75], this is very likely NP-hard

if we are allowed to prescribe an arbitrary cyclic ordering of edges around each vertex (i.e.,

not from a planar drawing). But is it NP-hard for plane graphs?

163

References

[1] Eyal Ackerman. A note on 1-planar graphs. Discrete Appl. Math., 175:104–108, 2014.

Cited on page(s): 154

[2] Pankaj K. Agarwal, Marc van Kreveld, and Subhash Suri. Label placement by maximum

independent set in rectangles. Computational Geometry, 11(3):209 – 218, 1998.

Cited on page(s): 67

[3] Abu Reyan Ahmed, Felice De Luca, Sabin Devkota, Alon Efrat, Md. Iqbal Hossain,

Stephen G. Kobourov, Jixian Li, Sammi Abida Salma, and Eric Welch. L-Graphs and

Monotone L-Graphs. CoRR, abs/1703.01544, 2017.

Cited on page(s): 92, 93, 100

[4] Oswin Aichholzer, Florian Ebenführe, Irene Parada, Alexander Pilz, and Birgit Vogten-

huber. On semi-simple drawings of the complete graph. XVII Spanish Meeting on

Computational Geometry, 2017, to appear.

Cited on page(s): 2

[5] Muhammad Jawaherul Alam, Therese Biedl, Stefan Felsner, Andreas Gerasch, Michael

Kaufmann, and Stephen G. Kobourov. Linear-time algorithms for hole-free rectilinear

proportional contact graph representations. Algorithmica, 67(1):3–22, 2013.

Cited on page(s): 165

[6] Muhammad Jawaherul Alam, Therese Biedl, Stefan Felsner, Michael Kaufmann, and

Stephen Kobourov. Proportional contact representations of planar graphs. http://

page.math.tu-berlin.de/~felsner/Paper/prop_contact.pdf, 2012. Full version

164

http://page.math.tu-berlin.de/~felsner/Paper/prop_contact.pdf
http://page.math.tu-berlin.de/~felsner/Paper/prop_contact.pdf

appeared in [5], but it excludes the result referenced in Section 5.1.3.

Cited on page(s): 91

[7] Takao Asano, Shunji Kikuchi, and Nobuji Saito. A linear algorithm for finding

Hamiltonian cycles in 4-connected maximal planar graphs. Discr. Applied Mathematics,

7(1):1 – 15, 1984.

Cited on page(s): 24, 25, 49

[8] Andrei Asinowski, Elad Cohen, Martin Charles Golumbic, Vincent Limouzy, Marina

Lipshteyn, and Michal Stern. String graphs of k-bend paths on a grid. Electronic

Notes in Discrete Mathematics, 37:141–146, 2011.

Cited on page(s): 13

[9] Christopher Auer, Franz J. Brandenburg, Andreas Gleißner, and Josef Reislhuber.

1-planarity of graphs with a rotation system. J. Graph Algorithms Appl., 19(1):67–86,

2015.

Cited on page(s): 150

[10] Seymour Benzer. On the topology of the genetic fine structure. Proceedings of the

National Academy of Sciences of the United States of America, 45(11):1607–1620,

1959.

Cited on page(s): 8

[11] Therese Biedl and Martin Derka. 1-string B1-VPG Representations of Planar Partial

3-Trees and Some Subclasses. In Proceedings of the 27th Canadian Conference on

Computational Geometry, CCCG 2015, 2015.

Cited on page(s): 85, 105

[12] Therese Biedl and Martin Derka. 1-String B2-VPG Representation of Planar Graphs.

In 31st International Symposium on Computational Geometry, SoCG 2015, pages

141–155. LiPiCS, 2015.

Cited on page(s): 24, 94

165

[13] Therese Biedl and Martin Derka. 1-String B2-VPG Representation of Planar Graphs.

Journal of Computational Geometry, 7(2):191–215, 2016.

Cited on page(s): 24

[14] Therese Biedl and Martin Derka. Order-preserving 1-string representations of planar

graphs. In SOFSEM 2017: Theory and Practice of Computer Science - 43rd Inter-

national Conference on Current Trends in Theory and Practice of Computer Science,

Proceedings, volume 10139 of Lecture Notes in Computer Science, pages 283–294.

Springer, 2017.

Cited on page(s): 114

[15] Therese Biedl and Martin Derka. Splitting B2-VPG Graphs into Outer-string and

Co-comparability Graphs. In Algorithms and Data Structures Symposium, WADS

2017, to appear, 2017.

Cited on page(s): 68

[16] Therese Biedl, Giuseppe Liotta, and Fabrizio Montecchiani. On visibility represen-

tations of non-planar graphs. In 32nd International Symposium on Computational

Geometry, SoCG 2016, volume 51 of LIPIcs, pages 19:1–19:16. Schloss Dagstuhl -

Leibniz-Zentrum fuer Informatik, 2016.

Cited on page(s): 150

[17] Therese Biedl and Lesvia Elena Ruiz Velázquez. Drawing planar 3-trees with given

face areas. Comput. Geom., 46(3):276–285, 2013.

Cited on page(s): 94

[18] Hans Bodlaender. Planar graphs with bounded treewidth. Technical Report RUU-CS-

88-14, Rijksuniversiteit Utrecht, 1988.

Cited on page(s): 104

[19] Drago Bokal, Éva Czabarka, László A. Székely, and Imrich Vrt’o. General lower

bounds for the minor crossing number of graphs. Discrete & Computational Geometry,

44(2):463–483, 2010.

Cited on page(s): 158

166

[20] Flavia Bonomo, Maŕıa Ṕıa Mazzoleni, and Maya Stein. Clique coloring B1-EPG graphs.

Discrete Mathematics, 340(5):1008–1011, 2017.

Cited on page(s): 21

[21] Marin Bougeret, Stéphane Bessy, Daniel Gonçalves, and Christophe Paul. On in-

dependent set on B1-EPG graphs. In Approximation and Online Algorithms - 13th

International Workshop, WAOA 2015, Revised Selected Papers, volume 9499 of Lecture

Notes in Computer Science, pages 158–169. Springer, 2015.

Cited on page(s): 21

[22] Franz J. Brandenburg. 1-visibility representations of 1-planar graphs. J. Graph

Algorithms Appl., 18(3):421–438, 2014.

Cited on page(s): 150, 152, 154

[23] Andreas Brandstädt, Van Bang Le, and Jeremy P. Spinrad. Graph Classes: A Survey.

Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1999.

Cited on page(s): 88, 91

[24] Sergio Cabello, Jean Cardinal, and Stefan Langerman. The clique problem in ray

intersection graphs. Discrete & Computational Geometry, 50(3):771–783, 2013.

Cited on page(s): 83

[25] Sergio Cabello and Miha Jejčič. Refining the hierarchies of classes of geometric

intersection graphs. Electronic Notes in Discrete Mathematics, 54:223–228, 2016.

Cited on page(s): 16

[26] Jean Cardinal, Stefan Felsner, Tillmann Miltzow, Casey Tompkins, and Birgit Vogten-

huber. Intersection graphs of rays and grounded segments. Technical Report 1612.03638

[cs.DM], ArXiV, 2016.

Cited on page(s): 75

[27] Jean Cardinal, Stefan Felsner, Tillmann Miltzow, Casey Tompkins, and Birgit Vogten-

huber. Intersection graphs of rays and grounded segments. In Graph-Theoretic Concepts

in Computer Science WG 2017, to appear, 2017.

Cited on page(s): 75

167

[28] Daniele Catanzaro, Steven Chaplick, Stefan Felsner, Bjarni V. Halldórsson, Magnús M.

Halldórsson, Thomas Hixon, and Juraj Stacho. Max point-tolerance graphs. CoRR,

abs/1508.03810, 2015.

Cited on page(s): 93

[29] Jérémie Chalopin and Daniel Gonçalves. Every planar graph is the intersection graph

of segments in the plane: extended abstract. In ACM Symposium on Theory of

Computing, STOC 2009, pages 631–638. ACM, 2009.

Cited on page(s): 12, 15

[30] Jérémie Chalopin, Daniel Gonçalves, and Pascal Ochem. Planar graphs are in 1-string.

In ACM-SIAM Symposium on Discrete Algorithms, SODA ’07, pages 609–617. SIAM,

2007.

Cited on page(s): 12, 23, 24

[31] Jérémie Chalopin, Daniel Gonçalves, and Pascal Ochem. Planar graphs have 1-string

representations. Discrete & Computational Geometry, 43(3):626–647, 2010.

Cited on page(s): 12, 23, 24, 25, 31, 56, 57, 94, 123

[32] Steven Chaplick, Stefan Felsner, Udo Hoffmann, and Veit Wiechert. Grid intersection

graphs and order dimension. CoRR, abs/1512.02482, 2015.

Cited on page(s): 93

[33] Steven Chaplick, V́ıt Jeĺınek, Jan Kratochv́ıl, and Tomáš Vyskočil. Bend-Bounded Path

Intersection Graphs: Sausages, Noodles, and Waffles on a Grill. In Graph-Theoretic

Concepts in Computer Science - 38th International Workshop, WG 2012, Revised

Selected Papers, volume 7551 of Lecture Notes in Computer Science, pages 274–285.

Springer, 2012.

Cited on page(s): 19, 109, 111, 159

[34] Steven Chaplick, Stephen G. Kobourov, and Torsten Ueckerdt. Equilateral L-Contact

Graphs. In Graph-Theoretic Concepts in Computer Science - 39th International

Workshop, WG 2013, Revised Papers, volume 8165 of Lecture Notes in Computer

Science, pages 139–151. Springer, 2013.

Cited on page(s): 88, 91

168

[35] Steven Chaplick and Torsten Ueckerdt. Planar graphs as VPG-graphs. J. Graph

Algorithms Appl., 17(4):475–494, 2013.

Cited on page(s): 13, 23

[36] Natalia de Castro, Francisco Javier Cobos, Juan Carlos Dana, Alberto Márquez, and

Marc Noy. Triangle-free planar graphs and segment intersection graphs. J. Graph

Algorithms Appl., 6(1):7–26, 2002.

Cited on page(s): 12

[37] Hubert de Fraysseix and Patrice Ossona de Mendez. Regular orientations, arboricity,

and augmentation. In Graph Drawing, DIMACS International Workshop, GD ’94,

volume 894 of Lecture Notes in Computer Science, pages 111–118. Springer, 1994.

Cited on page(s): 154

[38] Hubert de Fraysseix, Patrice Ossona de Mendez, and János Pach. Representation of

planar graphs by segments. Intuitive Geometry, 63:109–117, 1991.

Cited on page(s): 12, 13, 86, 136

[39] Hubert de Fraysseix, Patrice Ossona de Mendez, and Pierre Rosenstiehl. On triangle

contact graphs. Combinatorics, Probability & Computing, 3:233–246, 1994.

Cited on page(s): 136

[40] Gideon Ehrlich, Shimon Even, and Robert Endre Tarjan. Intersection graphs of curves

in the plane. J. Comb. Theory, Ser. B, 21(1):8–20, 1976.

Cited on page(s): 8, 10, 137

[41] Ehab S. El-Mallah and Charles J. Colbourn. Partitioning the edges of a planar graph

into two partial k-trees. Congressus Numerantium 66, pages 69 – 80, 1988.

Cited on page(s): 98

[42] Stefan Felsner, Kolja B. Knauer, George B. Mertzios, and Torsten Ueckerdt. Intersection

graphs of L-shapes and segments in the plane. In Mathematical Foundations of

Computer Science (MFCS’14), Part II, volume 8635 of Lecture Notes in Computer

Science, pages 299–310. Springer, 2014.

Cited on page(s): 31, 91, 92, 93, 94, 121, 123, 159

169

[43] Holger Flier, Matús Mihalák, Peter Widmayer, Anna Zych, Yusuke Kobayashi, and

Anita Schöbel. Selecting vertex disjoint paths in plane graphs. Networks, 66(2):136–144,

2015.

Cited on page(s): 16

[44] Jacob Fox and János Pach. Separator theorems and Turán-type results for planar

intersection graphs. Adv. Math., 219:1070–1080, 2008.

Cited on page(s): 20

[45] Jacob Fox and János Pach. A separator theorem for string graphs and its applications.

Combinatorics, Probability & Computing, 19(3):371–390, 2010.

Cited on page(s): 20

[46] Jacob Fox and János Pach. Computing the independence number of intersection

graphs. In Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on

Discrete Algorithms, SODA 2011, pages 1161–1165, 2011.

Cited on page(s): 20, 82

[47] Jacob Fox and János Pach. Coloring Kk-free intersection graphs of geometric objects

in the plane. Eur. J. Comb., 33(5):853–866, 2012.

Cited on page(s): 15

[48] Jacob Fox and János Pach. String graphs and incomparability graphs. In Symposuim

on Computational Geometry 2012, SoCG ’12, pages 405–414. ACM, 2012.

Cited on page(s): 15

[49] Jacob Fox and János Pach. Applications of a new separator theorem for string graphs.

Combinatorics, Probability & Computing, 23(1):66–74, 2014.

Cited on page(s): 20

[50] Mathew C. Francis and Abhiruk Lahiri. VPG and EPG bend-numbers of Halin graphs.

Discrete Applied Mathematics, 215:95–105, 2016.

Cited on page(s): 105, 107

170

[51] Tomás Gavenčiak, Przemyslaw Gordinowicz, Vı́t Jeĺınek, Pavel Klav́ık, and Jan

Kratochv́ıl. Cops and robbers on string graphs. In Algorithms and Computation - 26th

International Symposium, ISAAC 2015, Proceedings, volume 9472 of Lecture Notes in

Computer Science, pages 355–366. Springer, 2015.

Cited on page(s): 20

[52] Emilio Di Giacomo, Giuseppe Liotta, and Fabrizio Montecchiani. Drawing outer

1-planar graphs with few slopes. In 22nd International Symposium on Graph Drawing,

GD 2014, Revised Selected Papers, volume 8871 of Lecture Notes in Computer Science,

pages 174–185. Springer, 2014.

Cited on page(s): 147

[53] Martin Charles Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic

Press, New York, 1st edition, 1980.

Cited on page(s): 83

[54] Martin Charles Golumbic, Doron Rotem, and Jorge Urrutia. Comparability graphs

and intersection graphs. Discrete Mathematics, 43(1):37–46, 1983.

Cited on page(s): 74

[55] Daniel Gonçalves, Lucas Isenmann, and Claire Pennarun. Planar graphs as L-

intersection or L-contact graphs. CoRR, abs/1706.10047, 2017.

Cited on page(s): 15, 21, 66, 85, 130, 158

[56] Rajeev Govindan, Michael A. Langston, and Xudong Yan. Approximating the path-

width of outerplanar graphs. Inf. Process. Lett., 68(1):17–23, 1998.

Cited on page(s): 121

[57] Rudof Halin. Studies on minimally n-connected graphs. In Combinatorial Mathematics

and its Applications, pages 129–136. Academic Press, London, 1971.

Cited on page(s): 104

[58] Sariel Har-Peled and Kent Quanrud. Approximation algorithms for polynomial-

expansion and low-density graphs. In 23rd Annual European Symposium on Algorithms

ESA 2015, volume 9294 of Lecture Notes in Computer Science, pages 717–728. Springer,

171

2015.

Cited on page(s): 20

[59] Irith Ben-Arroyo Hartman, Ilan Newman, and Ran Ziv. On grid intersection graphs.

Discrete Mathematics, 87(1):41–52, 1991.

Cited on page(s): 12, 13

[60] Michael Kaufmann and Torsten Ueckerdt. The density of fan-planar graphs. CoRR,

abs/1403.6184, 2014.

Cited on page(s): 162

[61] J. Mark Keil, Joseph S. B. Mitchell, Dinabandhu Pradhan, and Martin Vatshelle. An

algorithm for the maximum weight independent set problem on outerstring graphs.

Comput. Geom., 60:19–25, 2017.

Cited on page(s): 20, 81, 139

[62] J. Mark Keil and Lorna Stewart. Approximating the minimum clique cover and other

hard problems in subtree filament graphs. Discrete Applied Mathematics, 154(14):1983–

1995, 2006.

Cited on page(s): 68, 81, 83

[63] Mark Keil, Joseph S. B. Mitchell, Dinabandhu Pradhan, and Martin Vatshelle. An

algorithm for the maximum weight independent set problem on outersting graphs. In

Proceedings of the 27th Canadian Conference on Computational Geometry, CCCG

2015, 2015.

Cited on page(s): 20, 81, 139

[64] Stephen G. Kobourov, Giuseppe Liotta, and Fabrizio Montecchiani. An annotated

bibliography on 1-planarity. CoRR, abs/1703.02261, 2017.

Cited on page(s): 150

[65] Stephen G. Kobourov, Torsten Ueckerdt, and Kevin Verbeek. Combinatorial and

geometric properties of planar Laman graphs. SIAM Symposium on Discrete Algorithms

(SODA 2013), pages 1668–1678, 2013.

Cited on page(s): 89, 90, 136

172

[66] Paul Koebe. Kontaktprobleme auf der konformen Abbildung. Ber. Verh. Sächs. Akad.

Wiss. Leipzig, Math.-Phys. Kl., 88:141–164, 1936.

Cited on page(s): 8

[67] Jan Kratochv́ıl. String graphs I. The number of critical nonstring graphs is infinite. J.

Comb. Theory, Ser. B, 52(1):53–66, 1991.

Cited on page(s): 9, 10, 14, 15, 141, 160

[68] Jan Kratochv́ıl. String graphs II. Recognizing string graphs is NP-hard. J. Comb.

Theory, Ser. B, 52(1):67–78, 1991.

Cited on page(s): 16, 17, 141, 142, 143, 160, 162, 163

[69] Jan Kratochv́ıl. A special planar satisfiability problem and a consequence of its NP-

completeness. Discrete Applied Mathematics, 52(3):233–252, 1994.

Cited on page(s): 17, 19, 134, 159

[70] Jan Kratochv́ıl and Jǐŕı Matoušek. String graphs requiring exponential representations.

J. Comb. Theory, Ser. B, 53(1):1–4, 1991.

Cited on page(s): 17, 109, 137, 138

[71] Abhiruk Lahiri, Joydeep Mukherjee, and C. R. Subramanian. Maximum independent

set on B1-VPG graphs. In Proceedings of Combinatorial Optimization and Applications

COCOA 2015, Lecture Notes in Computer Science 9486, pages 633–646. Springer,

2015.

Cited on page(s): 21, 67, 68, 69, 80

[72] James R. Lee. Separators in region intersection graphs. In Innovations in Theoretical

Computer Science, ITCS’17, 2017.

Cited on page(s): 20

[73] Jǐŕı Matoušek. Near-optimal separators in string graphs. CoRR, abs/1302.6482, 2013.

Cited on page(s): 20

[74] Matthias Middendorf and Frank Pfeiffer. The max clique problem in classes of string-

graphs. Discrete Mathematics, 108(1-3):365–372, 1992.

Cited on page(s): 14, 20, 92, 132, 133, 158, 160

173

[75] Matthias Middendorf and Frank Pfeiffer. Weakly transitive orientations, Hasse diagrams

and string graphs. Discrete Mathematics, 111(1-3):393–400, 1993.

Cited on page(s): 163

[76] Alexandre Rok and Bartosz Walczak. Outerstring graphs are χ-bounded. In 30th

Annual Symposium on Computational Geometry, SOCG’14, pages 136–143. ACM,

2014.

Cited on page(s): 20

[77] Marcus Schaefer. Complexity of some geometric and topological problems. In Graph

Drawing, 17th International Symposium, GD 2009, Chicago, IL, USA, September

22-25, 2009. Revised Papers, pages 334–344, 2009.

Cited on page(s): 19

[78] Marcus Schaefer, Eric Sedgwick, and Daniel Štefankovič. Recognizing string graphs is

in NP. Journal of Computer and System Sciences, 67(2):365–380, 2003.

Cited on page(s): 17, 19, 142, 161

[79] Edward R. Scheinerman. Intersection Classes and Multiple Intersection Parameters of

Graphs. PhD thesis, Princeton University, 1984.

Cited on page(s): 11

[80] F. W. Sinden. Topology of thin film rc-circuits. Bell System Technical Journal, 45:1639–

1662, 1966.

Cited on page(s): 8

[81] Carsten Thomassen. Rectilinear drawings of graphs. Journal of Graph Theory,

12(3):335–341, 1988.

Cited on page(s): 147

[82] William Thomas Tutte. Convex representations of graphs. Proc. London Math. Soc,

10(38):304–320, 1960.

Cited on page(s): 25

174

[83] William Thomas Tutte. How to draw a graph. Proc. London Math. Soc, 13(52):743–768,

1963.

Cited on page(s): 25

[84] W. Wessel and R. Pöschel. On circle graphs. In Horst Sachs, editor, Graphs, Hypergraphs

and Applications, volume 73 of Teubner-Texte zur Mathematik, pages 207–210. Teubner,

1985.

Cited on page(s): 121

[85] Hassler Whitney. A theorem on graphs. The Annals of Mathematics, 32(2):387–390,

1931.

Cited on page(s): 24

[86] Hassler Whitney. Congruent graphs and the connectivity of graphs. American Journal

of Mathematics, 54(1):150–168, 1932.

Cited on page(s): 152

175

	Introduction
	Definitions and Preliminaries
	Graph-theoretic preliminaries
	Subgraphs, subdivisions and minors
	Common graph classes
	Planarity and embeddings

	String representations
	1-string representations
	Bk-VPG representations
	Outer-string representations
	Complexity of recognition
	Algorithmic implications of string representations

	Organization of the thesis

	String Representations of Planar Graphs
	Definitions and basic results
	Representation layouts
	Private regions
	The tangling technique

	2-sided constructions for W-triangulations
	3-sided constructions for W-triangulations
	Extension from 4-connected triangulations to all planar graphs
	Example
	Conclusions

	Approximation Algorithms for B1-VPG and B2-VPG Graphs
	Decomposing into outer-string graphs
	What graphs are single-vertical?

	Decomposing into co-comparability graphs
	Co-comparability graphs
	Cornered B1-VPG graphs
	From grounded to cornered
	From centered to grounded
	Making single-vertical B2-VPG representations centered
	Putting it all together

	Applications
	Conclusions

	B1-VPG Representations
	Known B1-VPG representations
	Planar bipartite graphs
	Series-parallel graphs
	Laman graphs
	Planar 3-trees
	Other graph classes

	New B1-VPG representations
	Planar partial 3-trees
	IO-Graphs
	Halin graphs

	Graphs with no B1-VPG representations
	Conclusions

	Order-Preserving String Representations
	Linearly order-preserving 1-string representations
	Cyclically order-preserving 1-string representations
	Graphs with no cyclically order-preserving representations

	Outer-planar graphs
	Circle-chord representation
	B1-VPG representation
	Beyond outer-planar graphs?
	Order-preserving segment representations

	Selectively order-preserving representations
	Conclusions

	String Representations with Many Crossings
	Exponential construction
	Outer-string graphs
	1-planar graphs

	Future Directions
	Graphs with no string representations
	B1-VPG and segment representations
	Outer-string graphs
	1-planar graphs
	Order-preserving string representations

	References

