47 research outputs found

    Computational reverse mathematics and foundational analysis

    Get PDF
    Reverse mathematics studies which subsystems of second order arithmetic are equivalent to key theorems of ordinary, non-set-theoretic mathematics. The main philosophical application of reverse mathematics proposed thus far is foundational analysis, which explores the limits of different foundations for mathematics in a formally precise manner. This paper gives a detailed account of the motivations and methodology of foundational analysis, which have heretofore been largely left implicit in the practice. It then shows how this account can be fruitfully applied in the evaluation of major foundational approaches by a careful examination of two case studies: a partial realization of Hilbert's program due to Simpson [1988], and predicativism in the extended form due to Feferman and Sch\"{u}tte. Shore [2010, 2013] proposes that equivalences in reverse mathematics be proved in the same way as inequivalences, namely by considering only ω\omega-models of the systems in question. Shore refers to this approach as computational reverse mathematics. This paper shows that despite some attractive features, computational reverse mathematics is inappropriate for foundational analysis, for two major reasons. Firstly, the computable entailment relation employed in computational reverse mathematics does not preserve justification for the foundational programs above. Secondly, computable entailment is a Π11\Pi^1_1 complete relation, and hence employing it commits one to theoretical resources which outstrip those available within any foundational approach that is proof-theoretically weaker than Π11-CA0\Pi^1_1\text{-}\mathsf{CA}_0.Comment: Submitted. 41 page

    The formal verification of the ctm approach to forcing

    Full text link
    We discuss some highlights of our computer-verified proof of the construction, given a countable transitive set-model MM of ZFC\mathit{ZFC}, of generic extensions satisfying ZFC+¬CH\mathit{ZFC}+\neg\mathit{CH} and ZFC+CH\mathit{ZFC}+\mathit{CH}. Moreover, let R\mathcal{R} be the set of instances of the Axiom of Replacement. We isolated a 21-element subset Ω⊆R\Omega\subseteq\mathcal{R} and defined F:R→R\mathcal{F}:\mathcal{R}\to\mathcal{R} such that for every Φ⊆R\Phi\subseteq\mathcal{R} and MM-generic GG, M⊨ZC∪F“Φ∪ΩM\models \mathit{ZC} \cup \mathcal{F}\text{``}\Phi \cup \Omega implies M[G]⊨ZC∪Φ∪{¬CH}M[G]\models \mathit{ZC} \cup \Phi \cup \{ \neg \mathit{CH} \}, where ZC\mathit{ZC} is Zermelo set theory with Choice. To achieve this, we worked in the proof assistant Isabelle, basing our development on the Isabelle/ZF library by L. Paulson and others.Comment: 20pp + 14pp in bibliography & appendices, 2 table

    The Significance of Evidence-based Reasoning for Mathematics, Mathematics Education, Philosophy and the Natural Sciences

    Get PDF
    In this multi-disciplinary investigation we show how an evidence-based perspective of quantification---in terms of algorithmic verifiability and algorithmic computability---admits evidence-based definitions of well-definedness and effective computability, which yield two unarguably constructive interpretations of the first-order Peano Arithmetic PA---over the structure N of the natural numbers---that are complementary, not contradictory. The first yields the weak, standard, interpretation of PA over N, which is well-defined with respect to assignments of algorithmically verifiable Tarskian truth values to the formulas of PA under the interpretation. The second yields a strong, finitary, interpretation of PA over N, which is well-defined with respect to assignments of algorithmically computable Tarskian truth values to the formulas of PA under the interpretation. We situate our investigation within a broad analysis of quantification vis a vis: * Hilbert's epsilon-calculus * Goedel's omega-consistency * The Law of the Excluded Middle * Hilbert's omega-Rule * An Algorithmic omega-Rule * Gentzen's Rule of Infinite Induction * Rosser's Rule C * Markov's Principle * The Church-Turing Thesis * Aristotle's particularisation * Wittgenstein's perspective of constructive mathematics * An evidence-based perspective of quantification. By showing how these are formally inter-related, we highlight the fragility of both the persisting, theistic, classical/Platonic interpretation of quantification grounded in Hilbert's epsilon-calculus; and the persisting, atheistic, constructive/Intuitionistic interpretation of quantification rooted in Brouwer's belief that the Law of the Excluded Middle is non-finitary. We then consider some consequences for mathematics, mathematics education, philosophy, and the natural sciences, of an agnostic, evidence-based, finitary interpretation of quantification that challenges classical paradigms in all these disciplines

    A System of Interaction and Structure III: The Complexity of BV and Pomset Logic

    Get PDF
    Pomset logic and BV are both logics that extend multiplicative linear logic (with Mix) with a third connective that is self-dual and non-commutative. Whereas pomset logic originates from the study of coherence spaces and proof nets, BV originates from the study of series-parallel orders, cographs, and proof systems. Both logics enjoy a cut-admissibility result, but for neither logic can this be done in the sequent calculus. Provability in pomset logic can be checked via a proof net correctness criterion and in BV via a deep inference proof system. It has long been conjectured that these two logics are the same. In this paper we show that this conjecture is false. We also investigate the complexity of the two logics, exhibiting a huge gap between the two. Whereas provability in BV is NP-complete, provability in pomset logic is Σ2p\Sigma_2^p-complete. We also make some observations with respect to possible sequent systems for the two logics

    Computational complexity theory and the philosophy of mathematics

    Get PDF
    Computational complexity theory is a subfield of computer science originating in computability theory and the study of algorithms for solving practical mathematical problems. Amongst its aims is classifying problems by their degree of difficulty — i.e., how hard they are to solve computationally. This paper highlights the significance of complexity theory relative to questions traditionally asked by philosophers of mathematics while also attempting to isolate some new ones — e.g., about the notion of feasibility in mathematics, the P≠NP problem and why it has proven hard to resolve, and the role of non-classical modes of computation and proof

    The Significance of Evidence-based Reasoning in Mathematics, Mathematics Education, Philosophy, and the Natural Sciences

    Get PDF
    In this multi-disciplinary investigation we show how an evidence-based perspective of quantification---in terms of algorithmic verifiability and algorithmic computability---admits evidence-based definitions of well-definedness and effective computability, which yield two unarguably constructive interpretations of the first-order Peano Arithmetic PA---over the structure N of the natural numbers---that are complementary, not contradictory. The first yields the weak, standard, interpretation of PA over N, which is well-defined with respect to assignments of algorithmically verifiable Tarskian truth values to the formulas of PA under the interpretation. The second yields a strong, finitary, interpretation of PA over N, which is well-defined with respect to assignments of algorithmically computable Tarskian truth values to the formulas of PA under the interpretation. We situate our investigation within a broad analysis of quantification vis a vis: * Hilbert's epsilon-calculus * Goedel's omega-consistency * The Law of the Excluded Middle * Hilbert's omega-Rule * An Algorithmic omega-Rule * Gentzen's Rule of Infinite Induction * Rosser's Rule C * Markov's Principle * The Church-Turing Thesis * Aristotle's particularisation * Wittgenstein's perspective of constructive mathematics * An evidence-based perspective of quantification. By showing how these are formally inter-related, we highlight the fragility of both the persisting, theistic, classical/Platonic interpretation of quantification grounded in Hilbert's epsilon-calculus; and the persisting, atheistic, constructive/Intuitionistic interpretation of quantification rooted in Brouwer's belief that the Law of the Excluded Middle is non-finitary. We then consider some consequences for mathematics, mathematics education, philosophy, and the natural sciences, of an agnostic, evidence-based, finitary interpretation of quantification that challenges classical paradigms in all these disciplines

    Fragments and frame classes:Towards a uniform proof theory for modal fixed point logics

    Get PDF
    This thesis studies the proof theory of modal fixed point logics. In particular, we construct proof systems for various fragments of the modal mu-calculus, interpreted over various classes of frames. With an emphasis on uniform constructions and general results, we aim to bring the relatively underdeveloped proof theory of modal fixed point logics closer to the well-established proof theory of basic modal logic. We employ two main approaches. First, we seek to generalise existing methods for basic modal logic to accommodate fragments of the modal mu-calculus. We use this approach for obtaining Hilbert-style proof systems. Secondly, we adapt existing proof systems for the modal mu-calculus to various classes of frames. This approach yields proof systems which are non-well-founded, or cyclic.The thesis starts with an introduction and some mathematical preliminaries. In Chapter 3 we give hypersequent calculi for modal logic with the master modality, building on work by Ori Lahav. This is followed by an Intermezzo, where we present an abstract framework for cyclic proofs, in which we give sufficient conditions for establishing the bounded proof property. In Chapter 4 we generalise existing work on Hilbert-style proof systems for PDL to the level of the continuous modal mu-calculus. Chapter 5 contains a novel cyclic proof system for the alternation-free two-way modal mu-calculus. Finally, in Chapter 6, we present a cyclic proof system for Guarded Kleene Algebra with Tests and take a first step towards using it to establish the completeness of an algebraic counterpart
    corecore