817 research outputs found

    Combinatorial approach to the interpolation method and scaling limits in sparse random graphs

    Full text link
    We establish the existence of free energy limits for several combinatorial models on Erd\"{o}s-R\'{e}nyi graph G(N,cN)\mathbb {G}(N,\lfloor cN\rfloor) and random rr-regular graph G(N,r)\mathbb {G}(N,r). For a variety of models, including independent sets, MAX-CUT, coloring and K-SAT, we prove that the free energy both at a positive and zero temperature, appropriately rescaled, converges to a limit as the size of the underlying graph diverges to infinity. In the zero temperature case, this is interpreted as the existence of the scaling limit for the corresponding combinatorial optimization problem. For example, as a special case we prove that the size of a largest independent set in these graphs, normalized by the number of nodes converges to a limit w.h.p. This resolves an open problem which was proposed by Aldous (Some open problems) as one of his six favorite open problems. It was also mentioned as an open problem in several other places: Conjecture 2.20 in Wormald [In Surveys in Combinatorics, 1999 (Canterbury) (1999) 239-298 Cambridge Univ. Press]; Bollob\'{a}s and Riordan [Random Structures Algorithms 39 (2011) 1-38]; Janson and Thomason [Combin. Probab. Comput. 17 (2008) 259-264] and Aldous and Steele [In Probability on Discrete Structures (2004) 1-72 Springer].Comment: Published in at http://dx.doi.org/10.1214/12-AOP816 the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org

    On the Complexity of Reconstructing Chemical Reaction Networks

    Full text link
    The analysis of the structure of chemical reaction networks is crucial for a better understanding of chemical processes. Such networks are well described as hypergraphs. However, due to the available methods, analyses regarding network properties are typically made on standard graphs derived from the full hypergraph description, e.g.\ on the so-called species and reaction graphs. However, a reconstruction of the underlying hypergraph from these graphs is not necessarily unique. In this paper, we address the problem of reconstructing a hypergraph from its species and reaction graph and show NP-completeness of the problem in its Boolean formulation. Furthermore we study the problem empirically on random and real world instances in order to investigate its computational limits in practice

    An exactly solvable random satisfiability problem

    Full text link
    We introduce a new model for the generation of random satisfiability problems. It is an extension of the hyper-SAT model of Ricci-Tersenghi, Weigt and Zecchina, which is a variant of the famous K-SAT model: it is extended to q-state variables and relates to a different choice of the statistical ensemble. The model has an exactly solvable statistic: the critical exponents and scaling functions of the SAT/UNSAT transition are calculable at zero temperature, with no need of replicas, also with exact finite-size corrections. We also introduce an exact duality of the model, and show an analogy of thermodynamic properties with the Random Energy Model of disordered spin systems theory. Relations with Error-Correcting Codes are also discussed.Comment: 31 pages, 1 figur

    On the complexity of strongly connected components in directed hypergraphs

    Full text link
    We study the complexity of some algorithmic problems on directed hypergraphs and their strongly connected components (SCCs). The main contribution is an almost linear time algorithm computing the terminal strongly connected components (i.e. SCCs which do not reach any components but themselves). "Almost linear" here means that the complexity of the algorithm is linear in the size of the hypergraph up to a factor alpha(n), where alpha is the inverse of Ackermann function, and n is the number of vertices. Our motivation to study this problem arises from a recent application of directed hypergraphs to computational tropical geometry. We also discuss the problem of computing all SCCs. We establish a superlinear lower bound on the size of the transitive reduction of the reachability relation in directed hypergraphs, showing that it is combinatorially more complex than in directed graphs. Besides, we prove a linear time reduction from the well-studied problem of finding all minimal sets among a given family to the problem of computing the SCCs. Only subquadratic time algorithms are known for the former problem. These results strongly suggest that the problem of computing the SCCs is harder in directed hypergraphs than in directed graphs.Comment: v1: 32 pages, 7 figures; v2: revised version, 34 pages, 7 figure

    Pruning Processes and a New Characterization of Convex Geometries

    Get PDF
    We provide a new characterization of convex geometries via a multivariate version of an identity that was originally proved by Maneva, Mossel and Wainwright for certain combinatorial objects arising in the context of the k-SAT problem. We thus highlight the connection between various characterizations of convex geometries and a family of removal processes studied in the literature on random structures.Comment: 14 pages, 3 figures; the exposition has changed significantly from previous versio

    Hardness of submodular cost allocation : lattice matching and a simplex coloring conjecture

    Get PDF
    We consider the Minimum Submodular Cost Allocation (MSCA) problem. In this problem, we are given k submodular cost functions f1, ... , fk: 2V -> R+ and the goal is to partition V into k sets A1, ..., Ak so as to minimize the total cost sumi = 1,k fi(Ai). We show that MSCA is inapproximable within any multiplicative factor even in very restricted settings; prior to our work, only Set Cover hardness was known. In light of this negative result, we turn our attention to special cases of the problem. We consider the setting in which each function fi satisfies fi = gi + h, where each gi is monotone submodular and h is (possibly non-monotone) submodular. We give an O(k log |V|) approximation for this problem. We provide some evidence that a factor of k may be necessary, even in the special case of HyperLabel. In particular, we formulate a simplex-coloring conjecture that implies a Unique-Games-hardness of (k - 1 - epsilon) for k-uniform HyperLabel and label set [k]. We provide a proof of the simplex-coloring conjecture for k=3

    Hamilton cycles in graphs and hypergraphs: an extremal perspective

    Full text link
    As one of the most fundamental and well-known NP-complete problems, the Hamilton cycle problem has been the subject of intensive research. Recent developments in the area have highlighted the crucial role played by the notions of expansion and quasi-randomness. These concepts and other recent techniques have led to the solution of several long-standing problems in the area. New aspects have also emerged, such as resilience, robustness and the study of Hamilton cycles in hypergraphs. We survey these developments and highlight open problems, with an emphasis on extremal and probabilistic approaches.Comment: to appear in the Proceedings of the ICM 2014; due to given page limits, this final version is slightly shorter than the previous arxiv versio

    A Continuous-Discontinuous Second-Order Transition in the Satisfiability of Random Horn-SAT Formulas

    Full text link
    We compute the probability of satisfiability of a class of random Horn-SAT formulae, motivated by a connection with the nonemptiness problem of finite tree automata. In particular, when the maximum clause length is 3, this model displays a curve in its parameter space along which the probability of satisfiability is discontinuous, ending in a second-order phase transition where it becomes continuous. This is the first case in which a phase transition of this type has been rigorously established for a random constraint satisfaction problem
    corecore