2,683 research outputs found

    Combinatorial Properties and Recognition of Unit Square Visibility Graphs

    Get PDF
    Unit square (grid) visibility graphs (USV and USGV, resp.) are described by axis-parallel visibility between unit squares placed (on integer grid coordinates) in the plane. We investigate combinatorial properties of these graph classes and the hardness of variants of the recognition problem, i.e., the problem of representing USGV with fixed visibilities within small area and, for USV, the general recognition problem

    Unit Grid Intersection Graphs: Recognition and Properties

    Full text link
    It has been known since 1991 that the problem of recognizing grid intersection graphs is NP-complete. Here we use a modified argument of the above result to show that even if we restrict to the class of unit grid intersection graphs (UGIGs), the recognition remains hard, as well as for all graph classes contained inbetween. The result holds even when considering only graphs with arbitrarily large girth. Furthermore, we ask the question of representing UGIGs on grids of minimal size. We show that the UGIGs that can be represented in a square of side length 1+epsilon, for a positive epsilon no greater than 1, are exactly the orthogonal ray graphs, and that there exist families of trees that need an arbitrarily large grid

    Smoothing the gap between NP and ER

    Get PDF
    We study algorithmic problems that belong to the complexity class of the existential theory of the reals (ER). A problem is ER-complete if it is as hard as the problem ETR and if it can be written as an ETR formula. Traditionally, these problems are studied in the real RAM, a model of computation that assumes that the storage and comparison of real-valued numbers can be done in constant space and time, with infinite precision. The complexity class ER is often called a real RAM analogue of NP, since the problem ETR can be viewed as the real-valued variant of SAT. In this paper we prove a real RAM analogue to the Cook-Levin theorem which shows that ER membership is equivalent to having a verification algorithm that runs in polynomial-time on a real RAM. This gives an easy proof of ER-membership, as verification algorithms on a real RAM are much more versatile than ETR-formulas. We use this result to construct a framework to study ER-complete problems under smoothed analysis. We show that for a wide class of ER-complete problems, its witness can be represented with logarithmic input-precision by using smoothed analysis on its real RAM verification algorithm. This shows in a formal way that the boundary between NP and ER (formed by inputs whose solution witness needs high input-precision) consists of contrived input. We apply our framework to well-studied ER-complete recognition problems which have the exponential bit phenomenon such as the recognition of realizable order types or the Steinitz problem in fixed dimension.Comment: 31 pages, 11 figures, FOCS 2020, SICOMP 202

    Fourteenth Biennial Status Report: März 2017 - February 2019

    No full text

    Beyond analytical knowledge: The need for a combined theory of generation and explanation

    Get PDF
    Analytic approaches to design develop theories from real-world phenomena, and as such are predominantly focused on the ‘laws that restrict and structure the field of possibility’ (Hillier 1996: 221). However, in the domain of design we need theories of design possibility and actuality, or a combined theory of generation and explanation. Starting from the assertion that there are multiple branches of architectural knowledge, this paper discusses three artefacts (Venice, Le Corbusier’s Venice Hospital and Calvino’s Invisible Cities) suggesting that in these artefacts we recognise common morphogenetic characteristics, and the intersection of analytic thought with generative design. The aim is threefold: firstly, to explore the ways in which the common characteristics in the three works create syntaxes of combinations capable of describing the generative imagination as the outcome of definable processes and relations; secondly, to explain the importance of a theory in dynamic processes of interaction and association aside to static spatial structures. Thirdly, to show where we can situate these ideas in relation to intellectual and design practices, and how to project them in the future. It is proposed that the diversification of knowledge is the basic condition for the intersection of generative with analytical thought and the dynamic generation of meaning. The paper borrows from aesthetic and literary theory the notion of ‘possible worlds’ to take into account design as ‘worldmaking’ (Goodman 1978). It argues that analytic and generative knowledge are central in design, as each allows access to worlds whose centres of reality are not separate or fixed but interact and shift dynamically with creative activity and time. Aside to theories of explanation we need theories of generation or a combined theory of freedom and necessity in architecture and design

    Sign rank versus VC dimension

    Full text link
    This work studies the maximum possible sign rank of N×NN \times N sign matrices with a given VC dimension dd. For d=1d=1, this maximum is {three}. For d=2d=2, this maximum is Θ~(N1/2)\tilde{\Theta}(N^{1/2}). For d>2d >2, similar but slightly less accurate statements hold. {The lower bounds improve over previous ones by Ben-David et al., and the upper bounds are novel.} The lower bounds are obtained by probabilistic constructions, using a theorem of Warren in real algebraic topology. The upper bounds are obtained using a result of Welzl about spanning trees with low stabbing number, and using the moment curve. The upper bound technique is also used to: (i) provide estimates on the number of classes of a given VC dimension, and the number of maximum classes of a given VC dimension -- answering a question of Frankl from '89, and (ii) design an efficient algorithm that provides an O(N/log(N))O(N/\log(N)) multiplicative approximation for the sign rank. We also observe a general connection between sign rank and spectral gaps which is based on Forster's argument. Consider the N×NN \times N adjacency matrix of a Δ\Delta regular graph with a second eigenvalue of absolute value λ\lambda and ΔN/2\Delta \leq N/2. We show that the sign rank of the signed version of this matrix is at least Δ/λ\Delta/\lambda. We use this connection to prove the existence of a maximum class C{±1}NC\subseteq\{\pm 1\}^N with VC dimension 22 and sign rank Θ~(N1/2)\tilde{\Theta}(N^{1/2}). This answers a question of Ben-David et al.~regarding the sign rank of large VC classes. We also describe limitations of this approach, in the spirit of the Alon-Boppana theorem. We further describe connections to communication complexity, geometry, learning theory, and combinatorics.Comment: 33 pages. This is a revised version of the paper "Sign rank versus VC dimension". Additional results in this version: (i) Estimates on the number of maximum VC classes (answering a question of Frankl from '89). (ii) Estimates on the sign rank of large VC classes (answering a question of Ben-David et al. from '03). (iii) A discussion on the computational complexity of computing the sign-ran
    corecore