2,502 research outputs found

    Design and Development of Memristor Based Combinational Circuits.

    Get PDF
    Now a days the memristor based devices are gaining a lot of attention because of its nano device range and its non-volatile memory. The objective of our research work is to design an efficient, low power Combinational Circuits using memristor and to compare the performance of the memristor based combinational circuits with CMOS based combinational circuits using EDA tools. In this paper we are focusing on the design of full adder, full subtractor, and encoders /decoders using hybrid-CMOS memristor structure. Combining CMOS and memristor gives the promising solutions for area reduction on a chip

    The Synthesis of Cyclic Combinatorial Circuits

    Get PDF
    To be added

    Algorithmic Aspects of Cyclic Combinational Circuit Synthesis

    Get PDF
    Digital circuits are called combinational if they are memoryless: if they have outputs that depend only on the current values of the inputs. Combinational circuits are generally thought of as acyclic (i.e., feed-forward) structures. And yet, cyclic circuits can be combinational. Cycles sometimes occur in designs synthesized from high-level descriptions, as well as in bus-based designs [16]. Feedback in such cases is carefully contrived, typically occurring when functional units are connected in a cyclic topology. Although the premise of cycles in combinational circuits has been accepted, and analysis techniques have been proposed [7], no one has attempted the synthesis of circuits with feedback at the logic level. We have argued the case for a paradigm shift in combinational circuit design [10]. We should no longer think of combinational logic as acyclic in theory or in practice, since most combinational circuits are best designed with cycles. We have proposed a general methodology for the synthesis of multilevel networks with cyclic topologies and incorporated it in a general logic synthesis environment. In trials, benchmark circuits were optimized significantly, with improvements of up to 30%I n the area. In this paper, we discuss algorithmic aspects of cyclic circuit design. We formulate a symbolic framework for analysis based on a divide-and-conquer strategy. Unlike previous approaches, our method does not require ternary-valued simulation. Our analysis for combinationality is tightly coupled with the synthesis phase, in which we assemble a combinational network from smaller combinational components. We discuss the underpinnings of the heuristic search methods and present examples as well as synthesis results for benchmark circuits. In this paper, we discuss algorithmic aspects of cyclic circuit design. We formulate a symbolic framework for analysis based on a divide-and-conquer strategy. Unlike previous approaches, our method does not require ternary-valued simulation. Our analysis for combinationality is tightly coupled with the synthesis phase, in which we assemble a combinational network from smaller combinational components. We discuss the underpinnings of the heuristic search methods and present examples as well as synthesis results for benchmark circuits

    Redundant Logic Insertion and Fault Tolerance Improvement in Combinational Circuits

    Full text link
    This paper presents a novel method to identify and insert redundant logic into a combinational circuit to improve its fault tolerance without having to replicate the entire circuit as is the case with conventional redundancy techniques. In this context, it is discussed how to estimate the fault masking capability of a combinational circuit using the truth-cum-fault enumeration table, and then it is shown how to identify the logic that can introduced to add redundancy into the original circuit without affecting its native functionality and with the aim of improving its fault tolerance though this would involve some trade-off in the design metrics. However, care should be taken while introducing redundant logic since redundant logic insertion may give rise to new internal nodes and faults on those may impact the fault tolerance of the resulting circuit. The combinational circuit that is considered and its redundant counterparts are all implemented in semi-custom design style using a 32/28nm CMOS digital cell library and their respective design metrics and fault tolerances are compared

    Boolean Satisfiability in Electronic Design Automation

    No full text
    Boolean Satisfiability (SAT) is often used as the underlying model for a significant and increasing number of applications in Electronic Design Automation (EDA) as well as in many other fields of Computer Science and Engineering. In recent years, new and efficient algorithms for SAT have been developed, allowing much larger problem instances to be solved. SAT “packages” are currently expected to have an impact on EDA applications similar to that of BDD packages since their introduction more than a decade ago. This tutorial paper is aimed at introducing the EDA professional to the Boolean satisfiability problem. Specifically, we highlight the use of SAT models to formulate a number of EDA problems in such diverse areas as test pattern generation, circuit delay computation, logic optimization, combinational equivalence checking, bounded model checking and functional test vector generation, among others. In addition, we provide an overview of the algorithmic techniques commonly used for solving SAT, including those that have seen widespread use in specific EDA applications. We categorize these algorithmic techniques, indicating which have been shown to be best suited for which tasks
    corecore