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ABSTRACT. A method for designing PLA-based combinational circuits by modular decomposition is
presented. Main subjects are 1) Specific properties of TSUM operator, 2) MIN-TSUM and NOR-TSUM
expansions with respect to the bound set, X; of variables, 3) Realization of functions by multiple-valued
PLA-based combinational circuits, 4) Comparison with other methods. Experimental investigations show
that the size of suggested combinational circuit is the same as the size of multiple-valued PLA implementing
amultiple-valued logic function with large number of variables.
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1. Introduction

Multiple-valued logic is one of the active area of research. It is known that multiple-valued logic alows
interconnections to be reduced into a chip, as well as a reduction in the numbers of inputs and outputs.
Different MV PLA structures to implement the multiple-valued logic (MVL) functions have been proposed
[1, 2, 3, 4]. These MV PLA's redlize the logic functions using the MIN (r-valued minimum), MAX (r-valued
maximum), MODSUM (modular sum), linear SUM and TSUM (truncated sum) arrays. The number of
inputs, outputs and product terms of suggested MV PLA's have physical restrictions. These structures do not
permits the MVL functions with the large number of variables to be implemented because of the number of
inputs is smaller than the number of input variables. The solution of this problem is to use the functional
decomposition technique. The decomposition of a logic function can lead to a systematic design which
incorporates readily designed simpler functions. Ideally, a systematic design would posses such desirable
properties as regularity and testability.

One approach to decomposition of multiple-valued logic functions (MVL functions) is to extend
disjunctive decomposition for the binary case [5]. The main drawback of this approach is follows. Since
only avery small number of functions will have a specific decomposition property [5], if the function does
not have the desired property, the analysis does not yield a design. In other hand, the specific property of
MVL functionsis that an arbitrary logic function can be given by different set of multiple-valued operators.
These determines the basic multiple-valued gates from which a complex digital circuit implemented given
MVL function is synthesized.

In this paper a NOR-TSUM MV PLA, proposed by Pelayo and etc., is assumed to be the component
used to implement the function. A decomposition approach for the modular design of combinational
multiple-valued circuits based on the NOR-TSUM PLA is described. The primary objective of this approach
is to develop procedures which are applicable to the design of PLA-based combinational circuits and to
extent the class of decomposable functions.

The rest of the paper is structured as follows. Section 2 provides definitions and notations, the
distinctive features of TSUM operator are investigated in Section 3, Section 4 is devoted to MIN-TSUM and
NOR-TSUM decompositions of the MVL function; the MV PLA - based technique is explained in Section
5, experimental results are disscussed in Section 6, the Section 7 draws a conclusion.

2. Definition and notations
Let us examine some r-valued operators by which we can represent any r-valued logic function. Let x
and y be two r-valued variables. Then,
C) XA y=xy=MIN(X, y);
(b) X @ y=TUM(x+y, r-1);
{ r-1, ifx=-s,
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(©) X = 0, otherwise, se{0,1,...,r-1}.

A product of the literals x,%1:x,%2........x,9n, is reffered to as a product term (also called term or product
for short). In a product term, all the operations are AND operations. A product term that includes literals for
al variables x;, X, ..., X, is caled a full term. An r-valued minimum of term and r-valued constant,

f(0) % O1x,02-......x,On is denoted as an r-valued minimum term (also called r-valued term). An r-valued term
that contains literals for all variables x3, X», ..., X, is caled a full r-valued term. A truncated sum of r-valued
termsis called a truncated sum-of-minimums (TSOM) expression:

r"-1

(1) )= D, H(0)%TL3,0%..... %00
o=0
where the symbol Y stands for TSUM operator, f(o) is the value of function evauated with X=g,
0=(010......0n),, 0£f(0)e E'={0, 1, ..., r-1}, xe E', o6cE'.
In other hand, this expression may be written as follows [1]:

r"-1 o
(2) )= X Al Ux 9.
o=0 i=1

where the symbol U stands for binary NOR operator.
Expression ( 2) states that any r-valued function may be expanded as a truncated sum of binary NOR

terms weighted by the r-valued constants f(o).

Definition 1. LetXisthesetof r-valued variables. {X;, X5} is a partition of X when X;nX,=
and XiuXo=X.

To represent r-valued functions with minimal expressions, the following notations are adopted:
E' : the set of constantsis an r-valued Rosser algebra, E'={0, 1, ..., r-1}
X :theset of nr-valued variables {X1,%,,...,X.} , where n is the number of elements of X.
X, : the bound set of variables;
X, : the free set of variables;
d(X): the number of elements of the set X.
o :(010,...00), Where e E', i=1,2, ..., n.
T (uT...1,)e0, where e E', i=1,2,...,ng, d(Xy)=ny.
n - (771772. . .nnz)GO', where nie Er, i=1,2,...,n,, d(Xz): No.

Definition 2. Let f(X) be an r-valued function and {X;, X5} is a partition of X. Then the
projection of f(X) over X;=1, f(t, X;) isthe value of f(X) evaluated with X;=r.

Definition 3. Anr-valued function f(X) is said to have a generalized decomposition with a
bound set X; and afree set X, if there exist r-valued functions hy,h,,...,h and g such that

(3) f(X)=g(h:(X1), ha(X1),..., h(X1), X2)

where { Xy, X5} isapartition of X.
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Fig. 1 Circuit diagram of f(X)=g(h.(X1), ha(Xy),..., h(X1), X2). (a) h; is coded as r-valued variables,
(b) h=£ (7, x,) isexamined asthe projections of f(X) over X;=t.

There are two ways to realize generalized decomposition of MVL functions. The first way is applied in
classical decomposition methods. Here, r-valued functions h; are coded as r-valued variables of g (Fig. 1(a)).
By second way, r-valued functions hy(Xy), ha(Xy),..., h(Xy) can be examined as the projection of f(X) over
Xa=7, f(1.X;) (Fig. 1(b)). In this paper the circuit diagram of f(X)=g(hi(X1), h2(X1),-.., h(X1), X2), shown in Fig. 1
(@), will be consider more detail .



3. The specific properties of TSUM operator
In this section we derive the specific properties of TSUM operator. Based on these features the MIN-
TSUM and NOR-TSUM expansions with respect to a group of variables (Theorem 1 and Theorem 2) are
obtained which will be used in the next section for designing the PLA-based combinational circuits.
Let x, y and zbe r-valued logic variables. The following operations hold for multiple-valued algebra:
1. Associative laws. (x®@y)@x=x®(yD2)
2. Commutativelaws. x @ y=y ® x
3. Identities:
3A.(r-1) ® x=r-1
3B. 0 ®x=x
3C. x’ex'®...ex =r-1
3D.1AX® 2A% @..® (r-1) A x"=x
4 . Distributive laws:
4A. (xAY)®z=(xD2)(yD2)
4B. (x®Y)Az£(xAZ) @ (YA2)
4AC. (x®Y)AZ=(xAZ) ® (YAZ).
All specific properties of TSUM operator are proved in Appendix 1.

4. Decomposition of NOR-TSUM and MIN-TSUM expansions

In this section we will describe the new representations of NOR-TSUM and MIN-TSUM expansions
over the bound set, X; of variables.
The Qu(X) term is a binary function defined by the Boolean product of literals and taking values in the
{0, r-1} set:
Qu(X) = x,%1:%,92.........:%,0n
Theorem A. Let f(X) be an r-valued logic function and { X1, X5} be a partition of X. Let n;=d(X;) and n,=d(X,).
Then the MIN-TSUM expansion of f(X) over X; isgiven by

rM-1 r'-1
(4) )= 2 QX)) 2 H(EMAQy(%)
=0 n=0

where f(o) =f(t,n)is the value of f(X) evaluated with X;=t1 and X,=n, i.e. simple the value of f(X) for o,
0=(0105......0n), bethe input combination of X, 6={t, n}, Qu(X) = QX)AQ,(Xy).
(Proof) Transform expression ( 1) using conjunction and truncated sum properties. By definition of

Qo(X) term, expression ( 1) can be represented as:
r"-1

109= 2" H(0)AQuX)
c=0
Because { X;, X5} isapartition of X, the function Q4(X) can be expressed as Q4(X)=QAX1)AQ,(X,), where
o={1, n} is the input combination of X and 7 and n are the input combinations of X; and X,, respectively.

Therefore,
r"-1

100= 2210 A QuXe) A Qy(Xo)
o=0
Both conjunction and truncated sum are commutative (9), then
r"-1
0= 2" QEX)AT0)A QuX)
o=0
Note, that QX;) and Q,(X,) are the binary functions and f(o)-takes the value of O, 1, ..., (r-1). Because
o={1, n} and both conjunction and truncated sum are submitted to all distributive laws ( 14, ( 16), SO
-1 21
109= 20" QX)) X (EmAQy(X)
7=0 n=0



Hence, the theorem is proved. Q.E.D.
Note that the projection of f(X) over X; for MIN-TSUM expansion is determined as follows:

-1

(5, %)= 2 (EMAQ(X)
n=0
Example A. Consider a 3-valued 3 variable logic function f(xg,X2,%3) (r=3, n=3), shown in Table 1. Than
the MIN-TSUM expansion with respect to xi, X, variables for this function is given as
Tatmuya 1 f(X)= X %2(2-%s" @ 2-X5" @ 1-X52) @ X' X(1-X5"
Decomposition table for f(x;, Xp, X3) @ 1% @ 1-%5%) ® X1%(0-X5" ® 0-X5* @ 2:%5%) ®

X1 0 0 0 1 1 1 2 2 2 X10X21(2'X30 @ l'X3l @ O'X32) @ X11X21(0'X30 ®
X3X_ 0 1 2 0 1 2 0 1 2 2% @ 0-%9) @ X% (1xs® @ 0-x5' @ 1-x9) @
0 2|2 |1]1j0}]1]0O0]1]O X% (1x @ 0-x5" @ 1:xD) @ XA (Lx @
1 2111012 ]0]0]0]°Z2 0% @ 2% ® Xx:X(0-% @ 2:X5" @ 0-%57).
2 1 0 1 1 0 2 2 1 0 (End of example)

Theorem B. Let f(X) be an r-valued logic function and { X1, X5} be a partition of X. Let n;=d(X;) and n,=d(X,).
Then the expansion of f(X) over X; for NOR-TSUM expression is given by

rMq noo 2.1 o
(5) 0= 2 ((Ux 52" famA( Ux M
=0 J=1 n=0 i=1

wherethe symbol U stands for binary NOR operator.
(Proof) By theorem a any r-valued function can be represented as follows:

-1 21
T T
(6) 0= 2 QX) 2 HEmAQyX)
=0 n=0
Each term in previous expression may be converted as follows [1]
Ny
(7) QXY= XlTl'AXZTZ-A......-AanTnlz X, T U X T U U X, = Ux G
i=1

Taking into account the expression ( 7) we can make the substitution in ( 6). Hence we have a
theorem. Q.E.D.
Note that the projection of f(X) over X; for NOR-TSUM expansion is determined as follows:

-1 o
f(rX) = 2 frmA( Ux M)
n=0 i=1

Example B. The NOR-TSUM expansion with respect to x;, X, variables for function described in example a
isoffered as
fX)= x° Ux, AO-AXS @ 2-Axs' © 0-Axs") © x;* U Xy ALAXS © 0-Axs' ® 2A-%57) ® x,° U X AQLAXS
@ 0AXs' ® 1AX) ® X° Uxo" A(L-Ax @ 0AXg" @ 1-AXS) © X7 UXo" A(0-Axs” ® 2A-%5" @ OAXS) © X;° UXp'
ARAX @ 1AX' @ OAXS) @ X,° Ux? A(0-AX’ @ 0-Axg" @ 2A-%7) @ X1t Ux? A(LAX @ TAX' @ 1-Axs") @
X2 U2 AR-AxL @ 2-Axg" @ 1-Axg%). (End of example)

5. Design method for MV PLA-based combinational circuits

In this section we present a design method for MV PLA based combinational circuits using
decomposition of NOR-TSUM and MIN-TSUM expansions.

This novel method incorporates the concept of systematically reexpressing the given MVL function. In
our approach, we do not attempt to rewrite the function in terms of functions which are then used as new
variables in the logic equation. Rather, we identify the minimum number of projections of f(X) over X; and
reexpressed the given function by obtained partition of X. Each of fucntion projection is then utilized as r-
valued constant in the logic equation. The function is reespressed recursively until it is represented entirely
by the function projections. In this case the partition of X composes p subsets of variables { X, Xy, ..., Xp},
where p is the number of function reexpressions. In this paper we consider only partition of X containing
two subsets. Therefore, function f(X) is reexpressed only once (Theorem 1 and Theorem 2).



The r-valued combinational circuit composes of two level. On the first level the projections of f(X) over
X; are implemented by MV PLA. Let us consider the MV PLA proposed in [1], and called NOR-TSUM
PLA. In this case the number of inputs corresponds to the number of variables in the free set, X,. The
number of outputs is determined by the number of different projections in the NOR-TSUM expansion. On
the second level of combinational circuit the function projections over X; are identified as r-valued
constants. The number of inputs in the second NOR-TSUM PLA is determined by the number of variables
in bound set X;. Fig. 2(a) illustrates the structure of two-level PLA-based combinational circuit.

Note that instead of MV PLA we can use any kind of universal logic module such as T-gate
(multiplexer), programmable logic array (PAL), look-up table type FPGA (field programmable gate array)
and etc..

Example 3. Tabnuua 2 shows a 3-valued 5 variable function, f(xi, X, X3, Xs, Xs). A 3 variable MV PLA is
assumed to be the component used to implement the function. Since the MV PLA uses not more than 3
variables, only 3 variables are used to partition function f(X). No attempt is made to try 4 variables in an
attempt to decompose the function.

Selecting x; and x, as the variables of the free set, X,, the function f(X) is rewritten as a 3 variable
function and its functional values become the projections of f(X) over X;. Then, there are 5 different
projections of f(X) over X;=1, (7, X;), that is the number of product terms in the second MV PLA. Ther-
valued combinational circuit implementing f(X) function isshownin Fig. 2(b).

Tabnuya 2
Decomposition table of f(xy, Xo, X3, Xs, Xs)
X5 000000000 111111111 222222222
X4 000111222 000111222 000111222
X3 012012012 012012012 012012012
X2 X1
00 200002220 022220102 200002220
01 211112021 000000100 211112021
02 100001210 011110001 100001210
10 100001210 011110001 100001210
11 200002220 022220102 200002220
12 211112021 000000100 211112021
20 211112021 000000100 211112021
21 200002220 022220102 200002220
22 100001210 011110001 100001210
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Fig. 2 The structure of PLA-based combinational circuit (8) common case, (b) for function f(Xy, X2, X3, X4, Xs).

Tabnuya 3
PLA by method [1] Combinational circuit by the proposed method
Function Thefirst PLA The second PLA
In |ou | W | S In [ou | W | S In Jou | W | S |S+S
X+Y




S 4 1 13 153 2 1 8 136 2 1 1 17 153
S 4 1 35 | 459 2 4 15 | 300 2 1 16 272 | 572
S 4 1 11 187 2 3 4 76 2 1 10 170 | 246
XY
Mo 4 1 7 213 2 4 3 60 2 1 9 153 | 213
M, 4 1 156 | 2320 2 16 64 | 2048 2 1 16 272 | 2320
M, 4 1 138 | 2549 2 15 74 | 2294 2 1 15 255 | 2549
M 4 1 57 992 2 10 29 754 2 1 14 238 | 992
3 digit shift
register
Ro 4 1 5 128 2 3 3 60 2 1 4 68 128
Ry 4 1 5 51 2 3 2 34 2 1 1 17 51
Ry 4 1 5 51 2 3 2 34 2 1 1 17 51
Rs 4 1 5 128 2 3 3 60 2 1 4 68 51

6. Experimental results

Tabmuua 3 compares the size of synthesized circuits with the size of MV PLA implemented the initial
function. This table shows that the present method produces the competitive results with other methods.
Because the proposed decomposition approach permits only one r-valued function to be decomposed the
functions from the standardized benchmarks are separately implemented. Here such benchmarks as 2-figure
guaternary adder, 2-figure quaternary multiplier, 3 digit shift register are used for experimenta
investigations.

7. Conclusion

A new technique for realizing PLA-based combinational circuits has been proposed. This technique
yields multiple-valued circuit of reduced size. This has been illustrated by considering the realization of
functions from standardized benchmarks. Within suggested approach the novel MIN-TSUM and NOR-
TSUM expansions with respect to X; are derived. The specific properties of TSUM operator are investigated
too. It is shown that truncated sum of r-valued variables does not submit one of the distributive laws. It
needs to take into account the consideration at examining the MIN-TSUM and NOR-TSUM expansions.

Future work is carried out in frame of generalization the proposed approach for system of MVL
functions. It leads to investigate the performance of new approach on other standardized benchmark
problem.
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Appendix 1

1. Associativelaws. (8) (x®y)®x=x®(yd2)

(Proof) (x1®x2)@x3=MIN (X1+Xo, r-1)®Xs=MIN (X;+Xo+ X3, -1+ X3, r-1) = MIN(X+Xo+Xs, r-1), (a) because r-
1+z>r-1for al vauesof z
In other hand, x1®(x,®x3)=x1PMIN(G+Xs, r-D)=MIN (X;+Xo+ Xz, r-1+Xg, r-1) = MIN(X+Xo+ X3, r-1),
(b) because r-1+x >r-1 for all values of x.
Since expressions (a) and (b) are equivalent, then TSUM operator is associative. Q.E.D.

2. Commutativelaws. (9) x®@y=y®x

(Proof) This expression is proved using the definition of TSUM operator.

3. ldentities:  (10) (r-1) @ x=r-1

(Proof) (r-1) @ x=MIN(r-1+x, r-1) =r-1, becauser-1+x>r-1for al values of x. Q.E.D.

(11) 0 ®x=x
(Proof) 0®x=MIN(0+Xx, r-1) =MIN(x, r-1) = x. Q.E.D.

(12) Pox'®..ex=r-1
(Proof) This expression describes all input combination of x, therefore by definition of literal function Eq. (
12) takes value (r-1). Q.E.D.

(13) 1Ax'® 2A¥° ®..® (r-1) A x"*=x, where the symbol A stands for r-valued minimum.



(Proof) x=0A X°® LA @ 2 A X @..® (rF) AxX =1 Ax'® 2 A x*®..® (r-1) A x"*, because 0 Ax=0.
Q.E.D.

4. Distributive laws.
(14) (xAY)Dz=(x®2)(y®2), wherex, y,ze{0, 1, ..., r-1}
(Proof)
a) XAy®z=MIN(MIN (X,y) +z r-1) = MIN (Xx+z, y+z, r-1)
b) (x®2)(y®2=MIN (x+zr-1) A MIN (y+zr-1)=MIN(MIN(x+zr-1),MIN (y+zr-1))=MIN (x+z, y+z, r-
1).
Since expressions (a) and (b) are equivalent, then TSUM operator submit to the distributive law.
Q.E.D.

(15) (x®y)Az£(xA2) @ (YAZ).
(Proof)
a) (X®@Y)Az=MIN (x+y, r-1) A z= MIN( MIN(x+y, r-1), 2))= MIN (x+y, z, r-1).
b) (xA2) ® (yAZ2)=MIN (X, 2) @ MIN(Y, 2) =MIN(MIN(X, 2+MIN(y, 2), r-1) = MIN(x+y, z+X, 2z, y+z,
r-1)
Because, the expressions (a) and (b) are not equivalent, TSUM operator does not submit to the
distributive laws. Q.E.D.

(16) (x®Y)AZ=(xAZ) ® (YyAZ).
(Proof)
a) (X®Y) AZ=MIN(x+y, r-1) A Z = MIN(MIN(x+y, r-1), 2)) = MIN (x+y, Z, r-1).
b) (xAZ) @ (YAZ)= MIN(x, Z) ® MIN(y, Z) =MIN(MIN(x, 2)+MIN(y, 2), r-1) = MIN(x+y, Z+Xx, 27,

y+ Z‘, r'l)
Because Ze{0,r-1}, then

| X, ecmu z=0,
x+Z=MAX(X, y) = x+r-1, otherwise.

But x+r-1>r-1, Eq. (b) takes into account variable Z, therefore x+Z and Z do not examine.

The expression y+Z is analyzed by analogy with previous expression.

(€) MIN (x+y, Z+X, 2Z, y+Z, r-1)=MIN(x+y, z, r-1).

Since expressions (a) and (c) are equivaent, then TSUM operator submits to the distributive law.
Q.E.D.
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