Modular decomposition of the NOR-TSUM multiple-valued PLA

T. Kalganova ${ }^{\dagger}$, N. Lipnitskaya ${ }^{\dagger}$, G. Holowinski ${ }^{\dagger}$
${ }^{\dagger}$ Belarusian State University of Informatics and Radioelectronics, Laboratory of Image Processing and Pattern Recognition. Brovky St., 6, 220600, Minsk, Republic of Belarus, Phone: (0375172) 49-19-81, Fax: (0375172) 495-106, E-mail: jack@expert.belpak.minsk.by or pottosina@risq.belcaf.minsk.by
${ }^{\dagger}$ Institute of Computer Science \& Information Systems, Technical University, ul. Zolnierska 49, Szczecin, Poland, Fax. (+4891) 48-76439, E-mail: holowins@dedal.man.szczecin.pl

Abstract

A method for designing PLA-based combinational circuits by modular decomposition is presented. Main subjects are 1) Specific properties of TSUM operator, 2) MIN-TSUM and NOR-TSUM expansions with respect to the bound set, X_{I} of variables, 3) Realization of functions by multiple-valued PLA-based combinational circuits, 4) Comparison with other methods. Experimental investigations show that the size of suggested combinational circuit is the same as the size of multiple-valued PLA implementing a multiple-valued logic function with large number of variables.

KEY words. Multiple-valued logic, modular decompositions, logic design, multiple-valued programmable logic array (MV PLA)

1. Introduction

Multiple-valued logic is one of the active area of research. It is known that multiple-valued logic allows interconnections to be reduced into a chip, as well as a reduction in the numbers of inputs and outputs. Different MV PLA structures to implement the multiple-valued logic (MVL) functions have been proposed $[1,2,3,4]$. These MV PLA's realize the logic functions using the MIN (r-valued minimum), MAX (r-valued maximum), MODSUM (modular sum), linear SUM and TSUM (truncated sum) arrays. The number of inputs, outputs and product terms of suggested MV PLA's have physical restrictions. These structures do not permits the MVL functions with the large number of variables to be implemented because of the number of inputs is smaller than the number of input variables. The solution of this problem is to use the functional decomposition technique. The decomposition of a logic function can lead to a systematic design which incorporates readily designed simpler functions. Ideally, a systematic design would posses such desirable properties as regularity and testability.

One approach to decomposition of multiple-valued logic functions (MVL functions) is to extend disjunctive decomposition for the binary case [5]. The main drawback of this approach is follows. Since only a very small number of functions will have a specific decomposition property [5], if the function does not have the desired property, the analysis does not yield a design. In other hand, the specific property of MVL functions is that an arbitrary logic function can be given by different set of multiple-valued operators. These determines the basic multiple-valued gates from which a complex digital circuit implemented given MVL function is synthesized.

In this paper a NOR-TSUM MV PLA, proposed by Pelayo and etc., is assumed to be the component used to implement the function. A decomposition approach for the modular design of combinational multiple-valued circuits based on the NOR-TSUM PLA is described. The primary objective of this approach is to develop procedures which are applicable to the design of PLA-based combinational circuits and to extent the class of decomposable functions.

The rest of the paper is structured as follows. Section 2 provides definitions and notations, the distinctive features of TSUM operator are investigated in Section 3, Section 4 is devoted to MIN-TSUM and NOR-TSUM decompositions of the MVL function; the MV PLA - based technique is explained in Section 5, experimental results are disscussed in Section 6, the Section 7 draws a conclusion.

2. Definition and notations

Let us examine some r-valued operators by which we can represent any r-valued logic function. Let x and y be two r-valued variables. Then,

$$
\begin{align*}
& x \Lambda y=x \cdot y=\operatorname{MIN}(x, y) ; \tag{a}\\
& x \oplus y=\operatorname{TSUM}(x+y, r-1) ; \\
& \left\{\begin{array}{c}
r-1, \text { if } x=s,
\end{array}\right.
\end{align*}
$$

(b)
(c) $\quad x^{s}=0, \quad$ otherwise, $s \in\{0,1, \ldots, r-1\}$.

A product of the literals $x_{I} \sigma_{I} \cdot x_{2} \sigma_{2} \ldots \ldots \cdot x_{n}{ }^{\sigma_{n}}$, is reffered to as a product term (also called term or product for short). In a product term, all the operations are AND operations. A product term that includes literals for all variables $x_{1}, x_{2}, \ldots, x_{n}$ is called a full term. An r-valued minimum of term and r-valued constant, $f(\sigma) \cdot x_{1} \sigma_{l} \cdot x_{2} \sigma_{2} \ldots \ldots \cdot x_{n} \sigma_{n}$ is denoted as an r-valued minimum term (also called r-valued term). An r-valued term that contains literals for all variables $x_{1}, x_{2}, \ldots, x_{n}$ is called a full r-valued term. A truncated sum of r-valued terms is called a truncated sum-of-minimums (TSOM) expression:

$$
\begin{equation*}
f(X)=\sum_{\sigma=0}^{r^{n}-1} f(\sigma) \cdot x_{1} \sigma_{l} \cdot x_{2} \sigma_{2} \ldots \ldots \cdot x_{n} \sigma_{n} \tag{1}
\end{equation*}
$$

where the symbol \sum^{T} stands for TSUM operator, $f(\sigma)$ is the value of function evaluated with $X=\sigma$, $\sigma=\left(\sigma_{l} \sigma_{2} \ldots \ldots . \sigma_{n}\right)_{r}, 0 \neq f(\sigma) \in E^{r}=\{0,1, \ldots, r-1\}, x_{i} \in E^{r}, \sigma_{i} \subseteq E^{r}$.

In other hand, this expression may be written as follows [1]:

$$
\begin{equation*}
f(X)=\sum_{\sigma=0}^{r^{n}-1} f(\sigma) \Lambda\left(\bar{\bigcup}_{\substack{x_{i} \\ i=1}}^{n} \bar{\sigma}_{i}\right) \tag{2}
\end{equation*}
$$

where the symbol $\bar{\cup}$ stands for binary NOR operator.
Expression (2) states that any r-valued function may be expanded as a truncated sum of binary NOR terms weighted by the r-valued constants $f(\sigma)$.

Definition 1. Let X is the set of r-valued variables. $\left\{X_{1}, X_{2}\right\}$ is a partition of X when $X_{1} \cap X_{2}=\varnothing$ and $X_{1} \cup X_{2}=X$.

To represent r-valued functions with minimal expressions, the following notations are adopted:
$E^{r}:$ the set of constants is an r-valued Rosser algebra, $E^{r}=\{0,1, \ldots, r-1\}$
X : the set of $n r$-valued variables $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, where n is the number of elements of X.
X_{l} : the bound set of variables;
X_{2} : the free set of variables;
$d(X)$: the number of elements of the set X.
$\sigma:\left(\sigma_{l} \sigma_{2} \ldots \sigma_{n}\right)$, where $\sigma_{i} \in E^{r}, i=1,2, \ldots, n$.
$\tau:\left(\tau_{1} \tau_{2} \ldots \tau_{n_{l}}\right) \in \sigma$, where $\tau_{i} \in E^{r}, i=1,2, \ldots, n_{l}, d\left(X_{l}\right)=n_{l}$.
$\eta:\left(\eta_{1} \eta_{2} \ldots \eta_{n_{2}}\right) \in \sigma$, where $\eta_{i} \in E^{r}, i=1,2, \ldots, n_{2}, d\left(X_{2}\right)=n_{2}$.
Definition 2. Let $f(X)$ be an r-valued function and $\left\{X_{l}, X_{2}\right\}$ is a partition of X. Then the projection of $f(X)$ over $X_{l}=\tau, f\left(\tau, X_{2}\right)$ is the value of $f(X)$ evaluated with $X_{l}=\tau$.

Definition 3. An r-valued function $f(X)$ is said to have a generalized decomposition with a bound set X_{1} and a free set X_{2} if there exist r-valued functions $h_{1}, h_{2}, \ldots, h_{k}$ and g such that

$$
\begin{equation*}
f(X)=g\left(h_{l}\left(X_{I}\right), h_{2}\left(X_{I}\right), \ldots, h_{k}\left(X_{I}\right), X_{2}\right) \tag{3}
\end{equation*}
$$

where $\left\{X_{1}, X_{2}\right\}$ is a partition of X.

Fig. $\quad 1$ Circuit diagram of $f(X)=g\left(h_{l}\left(X_{l}\right), h_{2}\left(X_{l}\right), \ldots, h_{k}\left(X_{l}\right), X_{2}\right)$. (a) h_{i} is coded as r-valued variables,
(b) $h_{i}=f\left(\tau, \quad X_{2}\right) \quad$ is examined as the projections of $f(X)$ over $X_{I}=\tau$.

There are two ways to realize generalized decomposition of MVL functions. The first way is applied in classical decomposition methods. Here, r-valued functions h_{i} are coded as r-valued variables of g (Fig. 1(a)). By second way, r-valued functions $h_{l}\left(X_{l}\right), h_{2}\left(X_{l}\right), \ldots, h_{k}\left(X_{l}\right)$ can be examined as the projection of $f(X)$ over $X_{l}=\tau, f\left(\tau, X_{2}\right)$ (Fig. $1(b)$). In this paper the circuit diagram of $f(X)=g\left(h_{l}\left(X_{l}\right), h_{2}\left(X_{l}\right), \ldots, h_{k}\left(X_{1}\right), X_{2}\right)$, shown in Fig. 1 (a), will be consider more detail.

3. The specific properties of TSUM operator

In this section we derive the specific properties of TSUM operator. Based on these features the MINTSUM and NOR-TSUM expansions with respect to a group of variables (Theorem 1 and Theorem 2) are obtained which will be used in the next section for designing the PLA-based combinational circuits.

Let x, y and z be r-valued logic variables. The following operations hold for multiple-valued algebra:

1. Associative laws: $(x \oplus y) \oplus x=x \oplus(y \oplus z)$
2. Commutative laws: $x \oplus y=y \oplus x$
3. Identities:

3A. $(r-1) \oplus x=r-1$
3B. $0 \oplus x=x$
3C. $x^{0} \oplus x^{l} \oplus \ldots \oplus x^{r-1}=r-1$
3D. $1 \Lambda x^{1} \oplus 2 \Lambda x^{2} \oplus \ldots \oplus(r-1) \Lambda x^{r-1}=x$
4. Distributive laws:

4A. $(x \Lambda y) \oplus z=(x \oplus z)(y \oplus z)$
4B. $(x \oplus y) \Lambda z \neq(x \Lambda z) \oplus(y \Lambda z)$
4C. $(x \oplus y) \Lambda z^{i}=\left(x \Lambda z^{i}\right) \oplus\left(y \Lambda z^{i}\right)$.
All specific properties of TSUM operator are proved in Appendix 1.

4. Decomposition of NOR-TSUM and MIN-TSUM expansions

In this section we will describe the new representations of NOR-TSUM and MIN-TSUM expansions over the bound set, X_{l} of variables.

The $Q_{\sigma}(X)$ term is a binary function defined by the Boolean product of literals and taking values in the $\{0, r-1\}$ set:
$Q_{\sigma}(X)=x_{1} \sigma_{l} \cdot x_{2}{ }^{\sigma_{2}} \ldots \ldots \cdot x_{n} \sigma_{n}$
Theorem A. Let $f(X)$ be an r-valued logic function and $\left\{X_{1}, X_{2}\right\}$ be a partition of X. Let $n_{1}=d\left(X_{1}\right)$ and $n_{2}=d\left(X_{2}\right)$. Then the MIN-TSUM expansion of $f(X)$ over X_{l} is given by

$$
f(X)=\sum_{\tau=0}^{r^{n_{1}}-1} Q_{\tau}\left(X_{1}\right) \sum_{\eta=0}^{r^{n_{2}}-1} f(\tau, \eta) \Lambda Q_{\eta}\left(X_{2}\right)
$$

where $f(\sigma)=f(\tau, \eta)$ is the value of $f(X)$ evaluated with $X_{l}=\tau$ and $X_{2}=\eta$, i.e. simple the value of $f(X)$ for σ, $\sigma=\left(\sigma_{1} \sigma_{2} \ldots . . \sigma_{n}\right)_{r}$ be the input combination of $X, \sigma=\{\tau, \eta\}, Q_{\sigma}(X)=Q_{\tau}\left(X_{I}\right) \Lambda Q_{\eta}\left(X_{2}\right)$.
(Proof) Transform expression (1) using conjunction and truncated sum properties. By definition of $Q_{\sigma}(X)$ term, expression (1) can be represented as:
$r^{n}-1$

$$
f(X)=\sum_{\sigma=0}^{\mathrm{T}} f(\sigma) \Lambda Q_{\sigma}(X)
$$

Because $\left\{X_{l}, X_{2}\right\}$ is a partition of X, the function $Q_{\sigma}(X)$ can be expressed as $Q_{\sigma}(X)=Q_{\tau}\left(X_{I}\right) \Lambda Q_{\eta}\left(X_{2}\right)$, where $\sigma=\{\tau, \eta\}$ is the input combination of X and τ and η are the input combinations of X_{1} and X_{2}, respectively. Therefore,

$$
f(X)=\sum_{\sigma=0}^{\mathrm{T}} f(\sigma) \cdot \Lambda Q_{\tau}\left(X_{I}\right) \Lambda Q_{\eta}\left(X_{2}\right)
$$

Both conjunction and truncated sum are commutative
(9), then

$$
r^{n}-1
$$

$$
f(X)=\sum_{\sigma=0}^{\mathrm{T}} Q_{\tau}\left(X_{l}\right) \Lambda f(\boldsymbol{\sigma}) \cdot \Lambda Q_{\eta}\left(X_{2}\right)
$$

Note, that $Q_{\tau}\left(X_{1}\right)$ and $Q_{\eta}\left(X_{2}\right)$ are the binary functions and $f(\sigma)$ takes the value of $0,1, \ldots,(r-1)$. Because $\sigma=\{\tau, \eta\}$ and both conjunction and truncated sum are submitted to all distributive laws (14, (16), so

$$
f(X)=\sum_{\tau=0}^{r^{n_{1}}-1} Q_{\tau}\left(X_{1}\right) \sum_{\substack{r^{n_{2}}-1}}^{\substack{\mathrm{T} \\ \eta=0}}(\tau, \eta) \Lambda Q_{\eta}\left(X_{2}\right)
$$

Hence, the theorem is proved. Q.E.D.
Note that the projection of $f(X)$ over X_{l} for MIN-TSUM expansion is determined as follows:

$$
f\left(\tau, X_{2}\right)=\sum_{\eta=0}^{r^{n_{2}}-1} f(\tau, \eta) \Lambda Q_{\eta}\left(X_{2}\right)
$$

Example A. Consider a 3-valued 3 variable logic function $f\left(x_{1}, x_{2}, x_{3}\right)(r=3, n=3)$, shown in Table 1. Than the MIN-TSUM expansion with respect to x_{1}, x_{2} variables for this function is given as

Таблица $1 \quad f(\mathrm{X})=\boldsymbol{x}_{1}{ }^{0} \boldsymbol{x}_{2}{ }^{0}\left(2 \cdot x_{3}{ }^{0} \oplus 2 \cdot x_{3}{ }^{1} \oplus 1 \cdot x_{3}{ }^{2}\right) \oplus \boldsymbol{x}_{1}{ }^{1} \boldsymbol{x}_{2}{ }^{\mathbf{0}}\left(1 \cdot x_{3}{ }^{0}\right.$

										$\left.\oplus 1 \cdot x_{3}{ }^{1} \oplus 1 \cdot x_{3}{ }^{2}\right) \oplus x_{1}{ }^{2} x_{2}{ }^{0}\left(0 \cdot x_{3}{ }^{0} \oplus 0 \cdot x_{3}{ }^{1} \oplus 2 \cdot x_{3}{ }^{2}\right) \oplus$
								2	2	$x_{1}{ }^{0} x_{2}{ }^{1}{ }^{1} 2 \cdot x_{3}{ }^{0} \oplus 1 \cdot x_{3}{ }^{1} \oplus\left(0 \cdot x_{3}{ }^{2}\right) \oplus x_{1}{ }^{1} x_{2}{ }^{1}\left(0 \cdot x_{3}{ }^{0} \oplus\right.$
$x_{3} x_{2}$	0	1	2	0	1	2	0	1	2	$\left.2 \cdot x_{3}{ }^{1} \oplus 0 \cdot x_{3}{ }^{2}\right) \oplus x_{1}{ }^{2} x_{2}{ }^{1}\left(1 \cdot x_{3}{ }^{0} \oplus 0 \cdot x_{3}{ }^{1} \oplus 1 \cdot x_{3}{ }^{2}\right) \oplus$
0	2	2	1	1	0	1	0	1	0	$x_{1}{ }^{0} x_{2}{ }^{2}\left(1 \cdot x_{3}{ }^{0} \oplus 0 \cdot x_{3}{ }^{1} \oplus 1 \cdot x_{3}{ }^{2}\right) \oplus x_{1}{ }^{1} x_{2}{ }^{2}\left(1 \cdot x_{3}{ }^{0} \oplus\right.$
1	2	1	0	1	2	0	0	0	2	$\left.0 \cdot x_{3}{ }^{1} \oplus 2 \cdot x_{3}{ }^{2}\right) \oplus x_{1}{ }^{2} x_{2}{ }^{2}\left(0 \cdot x_{3}{ }^{0} \oplus 2 \cdot x_{3}{ }^{1} \oplus 0 \cdot x_{3}{ }^{2}\right)$.
2	1	0	1	1	0	2	2	1	0	(End of example)

Theorem B. Let $f(X)$ be an r-valued logic function and $\left\{X_{1}, X_{2}\right\}$ be a partition of X. Let $n_{l}=d\left(X_{I}\right)$ and $n_{2}=d\left(X_{2}\right)$. Then the expansion of $f(X)$ over X_{l} for NOR-TSUM expression is given by
where the symbol $\bar{\cup}$ stands for binary NOR operator.
(Proof) By theorem a any r-valued function can be represented as follows:

$$
f(X)=\sum_{\tau=0}^{r^{n_{l}}-1} Q_{\tau}\left(X_{1}\right) \sum_{\eta=0}^{r^{n_{2}}-1} f(\tau, \eta) \Lambda Q_{\eta}\left(X_{2}\right)
$$

Each term in previous expression may be converted as follows [1]

$$
\begin{equation*}
Q_{\tau}\left(X_{I}\right)=x_{I} \tau_{I \cdot \Lambda x_{2}} \tau_{2 \cdot \Lambda \ldots \ldots \cdot \Lambda x_{n_{l}}} \tau_{n_{l}=x_{I}} \bar{\tau}_{l} \cdot \bar{\cup}_{x_{2}} \bar{\tau}_{2} . \bar{\cup}_{\ldots \ldots . .} \bar{\cup}_{x_{n_{l}}} \bar{\tau}_{n_{l}=} \bar{\bigcup}_{i=1}^{n_{i}} \bar{\tau}_{i} \tag{7}
\end{equation*}
$$

Taking into account the expression (7) we can make the substitution in (6). Hence we have a theorem. Q.E.D.

Note that the projection of $f(X)$ over X_{l} for NOR-TSUM expansion is determined as follows:

$$
f\left(\tau, X_{2}\right)=\sum_{\eta=0}^{r^{n_{2}}-1} f(\tau, \eta) \Lambda\left(\bar{\cup}_{\substack{x_{i} \\ i=1}}^{n_{2}} \bar{\eta}_{i}\right)
$$

Example B. The NOR-TSUM expansion with respect to x_{1}, x_{2} variables for function described in example a is offered as

$$
f(\mathrm{X})=x_{1}{ }^{0} \bar{\cup} x_{2}{ }^{0} \Lambda\left(0 \cdot \Lambda x_{3}{ }^{0} \oplus 2 \cdot \Lambda x_{3}{ }^{1} \oplus 0 \cdot \Lambda x_{3}{ }^{2}\right) \oplus x_{1}{ }^{1} \bar{\cup} \boldsymbol{x}_{2}{ }^{0} \Lambda\left(1 \cdot \Lambda x_{3}{ }^{0} \oplus 0 \cdot \Lambda x_{3}{ }^{1} \oplus 2 \Lambda \cdot x_{3}{ }^{2}\right) \oplus \boldsymbol{x}_{1}{ }^{2} \bar{\cup} \boldsymbol{x}_{2}{ }^{0} \Lambda\left(1 \underline{\Lambda} \cdot x_{3}{ }^{0}\right.
$$ $\left.\oplus 0 \Lambda \cdot x_{3}{ }^{1} \oplus 1 \Lambda \cdot x_{3}{ }^{2}\right) \oplus x_{1}{ }^{0} \cup x_{2}{ }^{1} \Lambda\left(1 \cdot \Lambda x_{3}{ }^{0} \oplus 0 \Lambda \cdot x_{3}{ }^{1} \oplus 1 \cdot \Lambda x_{3}{ }^{2}\right) \oplus x_{1}{ }^{1} \cup x_{2}{ }^{1} \Lambda\left(0 \cdot \Lambda x_{3}{ }^{0} \oplus 2 \Lambda \cdot x_{3}{ }^{1} \oplus 0 \Lambda \cdot x_{3}{ }^{2}\right) \oplus x_{1}{ }^{2} \cup x_{2}{ }^{1}$ $\Lambda\left(2 \underline{\Lambda} \cdot x_{3}{ }^{0} \oplus 1 \Lambda \cdot x_{3}{ }^{1} \oplus 0 \Lambda \cdot x_{3}{ }^{2}\right) \oplus x_{1}{ }^{0}{ }^{\circ} x_{2}{ }^{2} \Lambda\left(0 \cdot \Lambda x_{3}{ }^{0} \oplus 0 \cdot \Lambda x_{3}{ }^{1} \oplus 2 \Lambda \cdot x_{3}{ }^{2}\right) \oplus x_{1}{ }^{1} \cup x_{2}{ }^{2} \Lambda\left(1 \Lambda \cdot x_{3}{ }^{0} \oplus 1 \Lambda \cdot x_{3}{ }^{1} \oplus 1 \cdot \Lambda x_{3}{ }^{2}\right) \oplus$ $x_{1}{ }^{2} \bar{\cup} x_{2}{ }^{2} \Lambda\left(2 \cdot \Lambda x_{3}{ }^{0} \oplus 2 \cdot \Lambda x_{3}{ }^{1} \oplus 1 \cdot \Lambda x_{3}{ }^{2}\right)$. (End of example)

5. Design method for MV PLA-based combinational circuits

In this section we present a design method for MV PLA based combinational circuits using decomposition of NOR-TSUM and MIN-TSUM expansions.

This novel method incorporates the concept of systematically reexpressing the given MVL function. In our approach, we do not attempt to rewrite the function in terms of functions which are then used as new variables in the logic equation. Rather, we identify the minimum number of projections of $f(X)$ over X_{I} and reexpressed the given function by obtained partition of X. Each of fucntion projection is then utilized as r valued constant in the logic equation. The function is reespressed recursively until it is represented entirely by the function projections. In this case the partition of X composes p subsets of variables $\left\{X_{1}, X_{2}, \ldots, X_{p}\right\}$, where p is the number of function reexpressions. In this paper we consider only partition of X containing two subsets. Therefore, function $f(X)$ is reexpressed only once (Theorem 1 and Theorem 2).

The r-valued combinational circuit composes of two level. On the first level the projections of $f(X)$ over X_{I} are implemented by MV PLA. Let us consider the MV PLA proposed in [1], and called NOR-TSUM PLA. In this case the number of inputs corresponds to the number of variables in the free set, X_{2}. The number of outputs is determined by the number of different projections in the NOR-TSUM expansion. On the second level of combinational circuit the function projections over X_{I} are identified as r-valued constants. The number of inputs in the second NOR-TSUM PLA is determined by the number of variables in bound set X_{I}. Fig. 2(a) illustrates the structure of two-level PLA-based combinational circuit.

Note that instead of MV PLA we can use any kind of universal logic module such as T-gate (multiplexer), programmable logic array (PAL), look-up table type FPGA (field programmable gate array) and etc..

Example 3. Таблица 2 shows a 3 -valued 5 variable function, $f\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)$. A 3 variable MV PLA is assumed to be the component used to implement the function. Since the MV PLA uses not more than 3 variables, only 3 variables are used to partition function $f(X)$. No attempt is made to try 4 variables in an attempt to decompose the function.

Selecting x_{1} and x_{2} as the variables of the free set, X_{2}, the function $f(X)$ is rewritten as a 3 variable function and its functional values become the projections of $f(X)$ over X_{l}. Then, there are 5 different projections of $f(X)$ over $X_{I}=\tau, f\left(\tau, X_{2}\right)$, that is the number of product terms in the second MV PLA. The r valued combinational circuit implementing $f(X)$ function is shown in Fig. 2(b).

Таблиұа 2
Decomposition table of $f\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)$

$\begin{aligned} & x_{5} \\ & x_{4} \\ & x_{3} \end{aligned}$	00000000	111111111	222222222
	000111222	000111222	000111222
	012012012	012012012	012012012
00	200002220	022220102	200002220
01	211112021	000000100	211112021
02	100001210	011110001	100001210
10	100001210	011110001	100001210
11	200002220	022220102	200002220
12	211112021	000000100	211112021
20	211112021	000000100	211112021
21	200002220	022220102	200002220
22	100001210	011110001	100001210
	$a b b b b a c a b$	$0 d d d d 0 e 0 d$	abbbbacab

(b)

(b)

Fig. 2 The structure of PLA-based combinational circuit (a) common case, (b) for function $f\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)$.

Function	PLA by method [1]				Combinational circuit by the proposed method								
	In	Out	W^{*}	S^{*}	The first PLA				The second PLA				$S_{1}+S_{2}$
					In	Out	W_{1}	S_{l}	In	Out	W_{2}	S_{2}	
$X+Y$													

S_{0}	4	1	13	$\mathbf{1 5 3}$	2	1	8	136	2	1	1	17	$\mathbf{1 5 3}$
S_{I}	4	1	35	$\mathbf{4 5 9}$	2	4	15	300	2	1	16	272	$\mathbf{5 7 2}$
S_{2}	4	1	11	$\mathbf{1 8 7}$	2	3	4	76	2	1	10	170	$\mathbf{2 4 6}$
$X^{*} Y$													
M_{0}	4	1	7	$\mathbf{2 1 3}$	2	4	3	60	2	1	9	153	$\mathbf{2 1 3}$
M_{1}	4	1	156	$\mathbf{2 3 2 0}$	2	16	64	2048	2	1	16	272	$\mathbf{2 3 2 0}$
M_{2}	4	1	138	$\mathbf{2 5 4 9}$	2	15	74	2294	2	1	15	255	$\mathbf{2 5 4 9}$
M_{3}	4	1	57	$\mathbf{9 9 2}$	2	10	29	754	2	1	14	238	$\mathbf{9 9 2}$
3 digit shift													
register													
R_{0}	4	1	5	$\mathbf{1 2 8}$	2	3	3	60	2	1	4	68	$\mathbf{1 2 8}$
R_{I}	4	1	5	$\mathbf{5 1}$	2	3	2	34	2	1	1	17	$\mathbf{5 1}$
R_{2}	4	1	5	$\mathbf{5 1}$	2	3	2	34	2	1	1	17	$\mathbf{5 1}$
R_{3}	4	1	5	$\mathbf{1 2 8}$	2	3	3	60	2	1	4	68	$\mathbf{5 1}$

6. Experimental results

Таблица 3 compares the size of synthesized circuits with the size of MV PLA implemented the initial function. This table shows that the present method produces the competitive results with other methods. Because the proposed decomposition approach permits only one r-valued function to be decomposed the functions from the standardized benchmarks are separately implemented. Here such benchmarks as 2-figure quaternary adder, 2-figure quaternary multiplier, 3 digit shift register are used for experimental investigations.

7. Conclusion

A new technique for realizing PLA-based combinational circuits has been proposed. This technique yields multiple-valued circuit of reduced size. This has been illustrated by considering the realization of functions from standardized benchmarks. Within suggested approach the novel MIN-TSUM and NORTSUM expansions with respect to X_{l} are derived. The specific properties of TSUM operator are investigated too. It is shown that truncated sum of r-valued variables does not submit one of the distributive laws. It needs to take into account the consideration at examining the MIN-TSUM and NOR-TSUM expansions.

Future work is carried out in frame of generalization the proposed approach for system of MVL functions. It leads to investigate the performance of new approach on other standardized benchmark problem.

8. Acknowledgment

The authors sincerely thank Dr. V. Shmerko fron Technical University (Szczecin, Poland) for his helpful comments and suggestions on this paper.

Appendix 1

1. Associative laws: (8) $\quad(x \oplus y) \oplus x=x \oplus(y \oplus z)$
$($ Proof $)\left(x_{1} \oplus x_{2}\right) \oplus x_{3}=\operatorname{MIN}\left(x_{1}+x_{2}, r-1\right) \oplus x_{3}=\operatorname{MIN}\left(x_{1}+x_{2}+x_{3}, r-1+x_{3}, r-1\right)=\operatorname{MIN}\left(x_{1}+x_{2}+x_{3}, r-1\right),(a)$ because $r-$ $1+z \geq r-1$ for all values of z.
In other hand, $x_{1} \oplus\left(x_{2} \oplus x_{3}\right)=x_{1} \oplus \operatorname{MIN}\left(x_{2}+x_{3}, r-1\right)=\operatorname{MIN}\left(x_{1}+x_{2}+x_{3}, r-1+x_{1}, r-1\right)=\operatorname{MIN}\left(x_{1}+x_{2}+x_{3}, r-1\right)$, (b) because $r-1+x \geq r-1$ for all values of x.

Since expressions (a) and (b) are equivalent, then TSUM operator is associative. Q.E.D.
2. Commutative laws: (9) $x \oplus y=y \oplus x$
(Proof) This expression is proved using the definition of TSUM operator.
3. Identities: (10) $\quad(r-1) \oplus x=r-1$
$($ Proof $)(r-1) \oplus x=\operatorname{MIN}(r-1+x, r-1)=r-1$, because $r-1+x \geq r-1$ for all values of x. Q.E.D.
(11) $0 \oplus x=x$
(Proof) $0 \oplus x=M I N(0+x, r-1)=M I N(x, r-1)=x$. Q.E.D.
(12) $\quad x^{0} \oplus x^{l} \oplus \ldots \oplus x^{r-1}=r-1$
(Proof) This expression describes all input combination of x, therefore by definition of literal function Eq. (12) takes value ($r-1$). Q.E.D.
(13) $\quad l \Lambda x^{l} \oplus 2 \Lambda x^{2} \oplus \ldots \oplus(r-1) \Lambda x^{r-1}=x$, where the symbol Λ stands for r-valued minimum.

```
(Proof) \(x=0 \Lambda x^{0} \oplus 1 \Lambda x^{1} \oplus 2 \Lambda x^{2} \oplus \ldots \oplus(r-1) \Lambda x^{r-1}=1 \Lambda x^{1} \oplus 2 \Lambda x^{2} \oplus \ldots \oplus(r-1) \Lambda x^{r-1}\), because \(0 \Lambda x^{0}=0\).
```

 Q.E.D.
 4. Distributive laws.
(14) $\quad(x \Lambda y) \oplus z=(x \oplus z)(y \oplus z)$, where $x, y, z \in\{0,1, \ldots, r-1\}$
(Proof)
a) $x \Lambda y \oplus z=\operatorname{MIN}(\operatorname{MIN}(x, y)+z, r-1)=\operatorname{MIN}(x+z, y+z, r-1)$
b) $(x \oplus z)(y \oplus z)=\operatorname{MIN}(x+z, r-1) \Lambda \operatorname{MIN}(y+z, r-1)=\operatorname{MIN}(M I N(x+z, r-1), M I N(y+z, r-1))=M I N(x+z, y+z, r-$
1).
Since expressions (a) and (b) are equivalent, then TSUM operator submit to the distributive law.
Q.E.D.
(15) $\quad(x \oplus y) \Lambda z \neq(x \Lambda z) \oplus(y \Lambda z)$.
(Proof)
a) $(x \oplus y) \Lambda z=\operatorname{MIN}(x+y, r-1) \Lambda z=\operatorname{MIN}(\operatorname{MIN}(x+y, r-1), z))=\operatorname{MIN}(x+y, z, r-1)$.
b) $(x \Lambda z) \oplus(y \Lambda z)=\operatorname{MIN}(x, z) \oplus \operatorname{MIN}(y, z)=\operatorname{MIN}(\operatorname{MIN}(x, z)+\operatorname{MIN}(y, z), r-1)=\operatorname{MIN}(x+y, z+x, 2 z, y+z$,
$r-1)$
Because, the expressions (a) and (b) are not equivalent, TSUM operator does not submit to the
distributive laws. Q.E.D.
(16) $\quad(x \oplus y) \Lambda z^{i}=\left(x \Lambda z^{i}\right) \oplus\left(y \Lambda z^{i}\right)$.
(Proof)
a) $\left.(x \oplus y) \Lambda z^{i}=\operatorname{MIN}(x+y, r-1) \Lambda z^{i}=\operatorname{MIN}\left(\operatorname{MIN}(x+y, r-1), z^{i}\right)\right)=\operatorname{MIN}\left(x+y, z^{i}, r-1\right)$.
b) $\left(x \Lambda z^{i}\right) \oplus\left(y \Lambda z^{i}\right)=\operatorname{MIN}\left(x, z^{i}\right) \oplus \operatorname{MIN}\left(y, z^{i}\right)=\operatorname{MIN}\left(\operatorname{MIN}\left(x, z^{i}\right)+\operatorname{MIN}\left(y, z^{i}\right), r-1\right)=\operatorname{MIN}\left(x+y, z^{i}+x, 2 z^{i}\right.$,
$\left.y+z^{i}, r-1\right)$
Because $z^{i} \in\{0, r-1\}$, then
$x+z^{i}=\operatorname{MAX}(x, y)=\left\{\begin{array}{l}x, \text { если } z=0, \\ x+r-1, \text { otherwise. }\end{array}\right.$
But $x+r-1 \geq r-1$, Eq. (b) takes into account variable z^{i}, therefore $x+z^{i}$ and z^{i} do not examine.
The expression $y+z^{i}$ is analyzed by analogy with previous expression.
(c) $\operatorname{MIN}\left(x+y, z^{i}+x, 2 z^{i}, y+z^{i}, r-1\right)=M I N(x+y, z, r-1)$.

Since expressions (a) and (c) are equivalent, then TSUM operator submits to distributive law. Q.E.D.

References

1 Pelayo F.J. and others, CMOS Current - Mode Multiple-Valued PLA's. IEEE Trans. Circut and Syst., 1991, Vol. 38, pp. 434-441.
2. Asari K., C. Eswaran, An Optimisation Technique for the Design of Multiple-Valued PLA's. IEEE Trans. Comput., vol.43, No. 1, 1994, pp.118-122.
3. Abd-El-Barr M. and H. Choy, Use of Simulated Annealing to Reduce 2-bit Decoder PLAs. Int. J. Electronics, 1993, Vol. 74, NO. 3, pp.441-450.
4. Deng X., T.Hanyu and M.Kameyama, Design And Evaluation Of A Current-Mode Multiple-Valued PLA Based On A Resonant Tunnelling transistor Model. IEE Proc.- Circuits Devices Syst., Vol. 141, No.6, 1994, pp.445-450.
5. Abugharieh S.B., S.C. Lee, A Fast Algorithm For The Disjunctive Decomposition Of M-Valued Functions. Part 1. The Decomposition Algorithm. IEEE Trans. on Computers. 1995, pp. 118-125.

