
MODULAR DECOMPOSITION OF THE NOR-TSUM MULTIPLE-VALUED PLA

T. KALGANOVA�, N. LIPNITSKAYA�, G. HOLOWINSKI�

� Belarusian State University of Informatics and Radioelectronics, Laboratory of Image Processing and
Pattern Recognition. Brovky St., 6, 220600, Minsk, Republic of Belarus, Phone: (0375172) 49-19-81,
Fax: (0375172) 495-106, E-mail: jack@expert.belpak.minsk.by or pottosina@risq.belcaf.minsk.by
� Institute of Computer Science & Information Systems, Technical University, ul. Zolnierska 49,
Szczecin, Poland, Fax. (+4891) 48-76439, E-mail: holowins@dedal.man.szczecin.pl

ABSTRACT. A method for designing PLA-based combinational circuits by modular decomposition is
presented. Main subjects are 1) Specific properties of TSUM operator, 2) MIN-TSUM and NOR-TSUM
expansions with respect to the bound set, X1 of variables, 3) Realization of functions by multiple-valued
PLA-based combinational circuits, 4) Comparison with other methods. Experimental investigations show
that the size of suggested combinational circuit is the same as the size of multiple-valued PLA implementing
a multiple-valued logic function with large number of variables.
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1. Introduction
Multiple-valued logic is one of the active area of research. It is known that multiple-valued logic allows

interconnections to be reduced into a chip, as well as a reduction in the numbers of inputs and outputs.
Different MV PLA structures to implement the multiple-valued logic (MVL) functions have been proposed
[1, 2, 3, 4]. These MV PLA's realize the logic functions using the MIN (r-valued minimum), MAX (r-valued
maximum), MODSUM (modular sum), linear SUM and TSUM (truncated sum) arrays. The number of
inputs, outputs and product terms of suggested MV PLA's have physical restrictions. These structures do not
permits the MVL functions with the large number of variables to be implemented because of the number of
inputs is smaller than the number of input variables. The solution of this problem is to use the functional
decomposition technique. The decomposition of a logic function can lead to a systematic design which
incorporates readily designed simpler functions. Ideally, a systematic design would posses such desirable
properties as regularity and testability.

One approach to decomposition of multiple-valued logic functions (MVL functions) is to extend
disjunctive decomposition for the binary case [5]. The main drawback of this approach is follows. Since
only a very small number of functions will have a specific decomposition property [5], if the function does
not have the desired property, the analysis does not yield a design. In other hand, the specific property of
MVL functions is that an arbitrary logic function can be given by different set of multiple-valued operators.
These determines the basic multiple-valued gates from which a complex digital circuit implemented given
MVL function is synthesized.

In this paper a NOR-TSUM MV PLA, proposed by Pelayo and etc., is assumed to be the component
used to implement the function. A decomposition approach for the modular design of combinational
multiple-valued circuits based on the NOR-TSUM PLA is described. The primary objective of this approach
is to develop procedures which are applicable to the design of PLA-based combinational circuits and to
extent the class of decomposable functions.

The rest of the paper is structured as follows. Section 2 provides definitions and notations, the
distinctive features of TSUM operator are investigated in Section 3, Section 4 is devoted to MIN-TSUM and
NOR-TSUM decompositions of the MVL function; the MV PLA - based technique is explained in Section
5, experimental results are disscussed in Section 6, the Section 7 draws a conclusion.

2. Definition and notations
Let us examine some r-valued operators by which we can represent any r-valued  logic function. Let x

and y be two r-valued variables. Then,
(a) x Λ y=x⋅y=MIN(x, y);
(b) x ⊕ y=TSUM(x+y, r-1);

r-1,   if x = s,
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(c) xs =   0,       otherwise, s ∈{0,1,...,r-1}.

A product of the literals x1
σ1⋅x2

σ2⋅...…⋅xn
σn, is reffered to as a product term (also called term or product

for short). In a product term, all the operations are AND operations. A product term that includes literals for
all variables x1, x2, ..., xn is called a full term. An r-valued minimum of term and r-valued constant,

f(σ)⋅x1
σ1⋅x2

σ2⋅...…⋅xn
σn  is denoted as an r-valued minimum term (also called r-valued term). An r-valued term

that contains literals for all variables x1, x2, ..., xn is called a full r-valued term. A truncated sum of r-valued
terms is called a truncated sum-of-minimums (TSOM) expression:

rn-1

( 1) f(X) =  ∑�

 f(σ)⋅x1
σ1⋅x2

σ2⋅...…⋅xn
σn

σ=0

where the symbol ∑� stands for TSUM operator, f(σ) is the value of function evaluated with X=σ,
σ=(σ1σ2…...σn)r, 0≠f(σ)∈Er={0, 1, ..., r-1}, xi∈Er, σi⊆Er.

In other hand, this expression may be written as follows [1]:
rn-1 n

( 2) f(X) =  ∑�

 f(σ)Λ(⎯∪ xi
⎯σi).

σ=0 i=1

where the symbol ⎯∪ stands for binary NOR operator.
Expression ( 2) states that any r-valued function may be expanded as a truncated sum of binary NOR

terms weighted by the r-valued constants f(σ).
Definition 1 .  Let X is the set of r-valued variables. {X1, X2} is a partition of X when X1∩X2=∅

and X1∪X2=X.
To represent r-valued functions with minimal expressions, the following notations are adopted:

Er : the set of constants is an r-valued Rosser algebra, Er={0, 1, ..., r-1}
X : the set of n r-valued variables {x1,x2,...,xn}, where n is the number of elements of X.
X1 : the bound set of variables;
X2 : the free set of variables;
d(X): the number of elements of the set X.
σ : (σ1σ2…σn), where σi∈Er, i=1,2, ..., n.
τ : (τ1τ2…τn1

)∈σσ, where τi∈Er, i=1,2,...,n1, d(X1)=n1.

η : (η1η2…ηn2
)∈σσ, where ηi∈Er, i=1,2,...,n2, d(X2)=n2.

Definition 2 .  Let f(X) be an r-valued function and {X1, X2} is a partition of X. Then the
projection of f(X) over X1=τ, f(τ, X2) is the value of f(X) evaluated with X1=τ.

Definition 3 .  An r-valued function f(X) is said to have a generalized decomposition with a
bound set X1 and a free set X2 if there exist r-valued functions h1,h2,...,hk and g such that

( 3) f(X)=g(h1(X1), h2(X1),..., hk(X1), X2)

where {X1, X2} is a partition of X.

k
   h1  

…

hk

n2

H
X1

n1

X2

g(h1(X1), ..., hk(X1), X2)G
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f(τ, X2)  

…

f(τ, X2)
n1

H
X2

n2

X1

g(h1(X1), ..., hk(X1), X2)G

(b)

Fig.  1 Circuit diagram of f(X)=g(h1(X1), h2(X1),..., hk(X1), X2). (a) hi is coded as r-valued variables,
(b) hi=f(τ, X2) is examined as the projections of f(X) over X1=τ.

There are two ways to realize generalized decomposition of MVL functions. The first way is applied in
classical decomposition methods. Here, r-valued functions hi are coded as r-valued variables of g (Fig.  1(a)).
By second way, r-valued functions h1(X1), h2(X1),..., hk(X1) can be examined as the projection of f(X) over
X1=τ, f(τ,X2) (Fig.  1(b)). In this paper the circuit diagram of f(X)=g(h1(X1), h2(X1),..., hk(X1), X2), shown in Fig.  1
(a), will be consider more detail.



3. The specific properties of TSUM operator
In this section we derive the specific properties of TSUM operator. Based on these features the MIN-

TSUM and NOR-TSUM expansions with respect to a group of variables (Theorem 1 and Theorem 2) are
obtained which will be used in the next section for designing the PLA-based combinational circuits.

Let x, y and z be r-valued logic variables. The following operations hold for multiple-valued algebra:
1.  Associative laws: ��⊕y)⊕x=�⊕(y⊕z)
2.  Commutative laws: � ⊕ y = y ⊕ �
3.  Identities:

3A. (r-1) ⊕ x=r-1
3B. 0 ⊕�=�
3C. �0⊕�

1⊕...⊕�
r-1=r-1

3D. 1 Λ �1 ⊕  2 Λ�
2  ⊕...⊕ (r-1) Λ �r-1=x

4.  Distributive laws:
4A. ��Λy)⊕z=(�⊕z)(y⊕z)
4B. ��⊕y)Λz≠(�Λz) ⊕ (yΛz)
4C. ��⊕y)Λzi=(�Λzi) ⊕ (yΛzi).

All specific properties of TSUM operator are proved in Appendix 1.

4. Decomposition of NOR-TSUM and MIN-TSUM expansions
In this section we will describe the new representations of NOR-TSUM and MIN-TSUM expansions

over the bound set, X1 of variables.
The Qσ(X) term is a binary function defined by the Boolean product of literals and taking values in the

{0, r-1} set:

Qσ(X) = x1
σ1⋅x2

σ2⋅...…⋅xn
σn

Theorem A. Let f(X) be an r-valued logic function and {X1, X2} be a partition of X. Let n1=d(X1) and n2=d(X2).
Then the MIN-TSUM expansion of f(X) over X1 is given by

rn1-1 rn2-1

( 4) f(X) =  ∑�

 Qτ(X1)  ∑�

  f(τ,η)ΛQη(X2)

τ=0 η=0

where f(σ) =f(τ,η)⋅is the value of f(X) evaluated with X1=τ and X2=η, i.e. simple the value of f(X) for σ,
σ=(σ1σ2…...σn)r be the input combination of X, σ={τ, η}, Qσ(X) = Qτ(X1)ΛQη(X2).

(Proof) Transform expression ( 1) using conjunction and truncated sum properties. By definition of
Qσ(X) term, expression ( 1) can be represented as:

rn-1

f(X) =  ∑�

 f(σ)ΛQσ(X)
σ=0

Because {X1, X2} is a partition of X, the function Qσ(X) can be expressed as Qσ(X)=Qτ(X1)ΛQη(X2), where
σ={τ, η} is the input combination of X and τ and η are the input combinations of X1 and X2, respectively.
Therefore,

rn-1

f(X) =  ∑�

f(σ)⋅Λ Qτ(X1) Λ Qη(X2)

σ=0
Both conjunction and truncated sum are commutative ( 9), then

rn-1

f(X) =  ∑� 
Qτ(X1)Λ f(σ)⋅Λ Qη(X2)

σ=0

Note, that Qτ(X1) and Qη(X2) are the binary functions and  f(σ)⋅takes the value of 0, 1, ..., (r-1). Because
σ={τ, η} and both conjunction and truncated sum are submitted to all distributive laws ( 14, ( 16), so

rn1-1 rn2-1

f(X) =  ∑�

 Qτ(X1)  ∑�

  f(τ,η)ΛQη(X2)

τ=0 η=0



Hence, the theorem is proved. Q.E.D.
Note that the projection of f(X) over X1 for MIN-TSUM expansion is determined as follows:

rn2-1

f(τ, X2) =  ∑�

  f(τ,η)ΛQη(X2)

η=0
Example A. Consider a 3-valued 3 variable logic function f(x1,x2,x3) (r=3, n=3), shown in Table 1. Than

the MIN-TSUM expansion with respect to x1, x2 variables for this function is given as
f(X)= x1

0x2
0(2 ⋅x3

0 ⊕ 2 ⋅x3
1 ⊕ 1 ⋅x3

2) ⊕ x1
1x2

0(1 ⋅x3
0

⊕ 1 ⋅x3
1 ⊕ 1 ⋅x3

2) ⊕ x1
2x2

0(0 ⋅x3
0 ⊕ 0 ⋅x3

1 ⊕ 2 ⋅x3
2) ⊕

x1
0x2

1(2 ⋅x3
0 ⊕ 1 ⋅x3

1 ⊕ 0 ⋅x3
2) ⊕ x1

1x2
1(0 ⋅x3

0 ⊕
2 ⋅x3

1 ⊕ 0 ⋅x3
2) ⊕ x1

2x2
1(1 ⋅x3

0 ⊕ 0 ⋅x3
1 ⊕ 1 ⋅x3

2) ⊕
x1

0x2
2(1 ⋅x3

0 ⊕ 0 ⋅x3
1 ⊕ 1 ⋅x3

2) ⊕ x1
1x2

2(1 ⋅x3
0 ⊕

0 ⋅x3
1 ⊕ 2 ⋅x3

2) ⊕ x1
2x2

2(0 ⋅x3
0 ⊕ 2 ⋅x3

1 ⊕ 0 ⋅x3
2).

(End of example)

Theorem B. Let f(X) be an r-valued logic function and {X1, X2} be a partition of X. Let n1=d(X1) and n2=d(X2).
Then the expansion of f(X) over X1 for NOR-TSUM expression is given by

rn1-1  n1 rn2-1    n2

( 5) f(X) =  ∑�

 (⎯∪ xj
⎯τj)  ∑�

  f(τ,η)Λ(⎯∪ xi
⎯ηi)

τ=0  j=1 η=0 i=1

where the symbol ⎯∪ stands for binary NOR operator.
(Proof) By theorem a any r-valued function can be represented as follows:

rn1-1 rn2-1

( 6) f(X) =  ∑�

 Qτ(X1)  ∑�

  f(τ,η)ΛQη(X2)

τ=0 η=0
Each term in previous expression may be converted as follows [1]

n1

( 7) Qτ(X1) = x1
τ1⋅Λx2

τ2⋅Λ...…⋅Λxn1

τn1 = x1
⎯τ1⋅⎯∪ x2

⎯τ2⋅⎯∪...…⋅⎯∪ xn1

⎯τn1 = ⎯∪ xi
⎯τi

i=1
Taking into account the expression ( 7) we can make the substitution in ( 6). Hence we have a

theorem. Q.E.D.
Note that the projection of f(X)  over X1 for NOR-TSUM expansion is determined as follows:

rn2-1 n2

f(τ,X2) = ∑�

  f(τ,η)Λ(⎯∪ xi
⎯ηi)

η=0 i=1
Example B. The NOR-TSUM expansion with respect to x1, x2 variables for function described in example a

is offered as
f(X)= x1

0⎯∪x2
0 Λ(0 ⋅Λx3

0 ⊕ 2 ⋅Λx3
1 ⊕ 0 ⋅Λx3

2) ⊕ x1
1⎯∪ x2

0 Λ(1 ⋅Λx3
0 ⊕ 0 ⋅Λx3

1 ⊕ 2Λ⋅x3
2) ⊕ x1

2⎯∪ x2
0  Λ(1Λ⋅x3

0

⊕ 0Λ⋅x3
1 ⊕ 1Λ⋅x3

2) ⊕ x1
0⎯∪x2

1 Λ(1 ⋅Λx3
0 ⊕ 0Λ⋅x3

1 ⊕ 1 ⋅Λx3
2) ⊕ x1

1⎯∪x2
1 Λ(0 ⋅Λx3

0 ⊕ 2Λ⋅x3
1 ⊕ 0Λ⋅x3

2) ⊕ x1
2⎯∪x2

1

Λ(2Λ⋅x3
0 ⊕ 1Λ⋅x3

1 ⊕ 0Λ⋅x3
2) ⊕ x1

0⎯∪x2
2 Λ(0 ⋅Λx3

0 ⊕ 0 ⋅Λx3
1 ⊕ 2Λ⋅x3

2) ⊕ x1
1⎯∪x2

2 Λ(1Λ⋅x3
0 ⊕ 1Λ⋅x3

1 ⊕ 1 ⋅Λx3
2) ⊕

x1
2⎯∪x2

2 Λ(2 ⋅Λx3
0 ⊕ 2 ⋅Λx3

1 ⊕ 1 ⋅Λx3
2). (End of example)

5. Design method for MV PLA-based combinational circuits
In this section we present a design method for MV PLA based combinational circuits using

decomposition of NOR-TSUM and MIN-TSUM expansions.
This novel method incorporates the concept of systematically reexpressing the given MVL function. In

our approach, we do not attempt to rewrite the function in terms of functions which are then used as new
variables in the logic equation. Rather, we identify the minimum number of projections of f(X) over X1 and
reexpressed the given function by obtained partition of X. Each of fucntion projection is then utilized as r-
valued constant in the logic equation. The function is reespressed recursively until it is represented entirely
by the function projections. In this case the partition of X composes p subsets of variables {X1, X2, ..., Xp},
where p is the number of function reexpressions. In this paper we consider only partition of X containing
two subsets. Therefore, function f(X) is reexpressed only once (Theorem 1 and Theorem 2).

������� 1
Decomposition table for f(x1, x2, x3)

x1

x3  x2

0
0

0
1

0
2

1
0

1
1

1
2

2
0

2
1

2
2

0 2 2 1 1 0 1 0 1 0
1 2 1 0 1 2 0 0 0 2
2 1 0 1 1 0 2 2 1 0



The r-valued combinational circuit composes of two level. On the first level the projections of f(X) over
X1 are implemented by MV PLA. Let us consider the MV PLA proposed in [1], and called NOR-TSUM
PLA. In this case the number of inputs corresponds to the number of variables in the free set, X2. The
number of outputs is determined by the number of different projections in the NOR-TSUM expansion. On
the second level of combinational circuit the function projections over X1 are identified as r-valued
constants. The number of inputs in the second NOR-TSUM PLA is determined by the number of variables
in bound set X1. Fig.  2(a) illustrates the structure of two-level PLA-based combinational circuit.

Note that instead of MV PLA we can use any kind of universal logic module such as T-gate
(multiplexer), programmable logic array (PAL), look-up table type FPGA (field programmable gate array)
and etc..

Example 3. ������� 2 shows a 3-valued 5 variable function, f(x1, x2, x3, x4, x5). A 3 variable MV PLA is
assumed to be the component used to implement the function. Since the MV PLA uses not more than 3
variables, only 3 variables are used to partition function f(X). No attempt is made to try 4 variables in an
attempt to decompose the function.

Selecting x1 and x2 as the variables of the free set, X2, the function f(X) is rewritten as a 3 variable
function and its functional values become the projections of f(X) over X1. Then, there are 5 different
projections of f(X) over X1=τ, f(τ, X2), that is the number of product terms in the second MV PLA. The r-
valued combinational circuit implementing f(X)  function is shown in Fig.  2(b).

������� 2

Decomposition table of f(x1, x2, x3, x4, x5)

x5

x4

x3

x2   x1

0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 2 2 2
0 1 2 0 1 2 0 1 2

1 1 1 1 1 1 1 1 1
0 0 0 1 1 1 2 2 2
0 1 2 0 1 2 0 1 2

2 2 2 2 2 2 2 2 2
0 0 0 1 1 1 2 2 2
0 1 2 0 1 2 0 1 2

00
01
02

2 0 0 0 0 2 2 2 0
2 1 1 1 1 2 0 2 1
1 0 0 0 0 1 2 1 0

0 2 2 2 2 0 1 0 2
0 0 0 0 0 0 1 0 0
0 1 1 1 1 0 0 0 1

2 0 0 0 0 2 2 2 0
2 1 1 1 1 2 0 2 1
1 0 0 0 0 1 2 1 0

10
11
12

1 0 0 0 0 1 2 1 0
2 0 0 0 0 2 2 2 0
2 1 1 1 1 2 0 2 1

0 1 1 1 1 0 0 0 1
0 2 2 2 2 0 1 0 2
0 0 0 0 0 0 1 0 0

1 0 0 0 0 1 2 1 0
2 0 0 0 0 2 2 2 0
2 1 1 1 1 2 0 2 1

20
21
22

2 1 1 1 1 2 0 2 1
2 0 0 0 0 2 2 2 0
1 0 0 0 0 1 2 1 0

0 0 0 0 0 0 1 0 0
0 2 2 2 2 0 1 0 2
0 1 1 1 1 0 0 0 1

2 1 1 1 1 2 0 2 1
2 0 0 0 0 2 2 2 0
1 0 0 0 0 1 2 1 0

a b b b b a c a b 0 d d d d 0 e 0 d a b b b b a c a b
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Fig.  2 The structure of PLA-based combinational circuit (a) common case, (b) for function f(x1, x2, x3, x4, x5).

������� 3
PLA by method [1] Combinational circuit by the proposed method

Function The first PLA The second PLA
In Out W* S* In Out W1 S1 In Out W2 S2 S1+S2

X+Y



S0 4 1 13 153 2 1 8 136 2 1 1 17 153
S1 4 1 35 459 2 4 15 300 2 1 16 272 572
S2 4 1 11 187 2 3 4 76 2 1 10 170 246

X*Y
M0 4 1 7 213 2 4 3 60 2 1 9 153 213
M1 4 1 156 2320 2 16 64 2048 2 1 16 272 2320
M2 4 1 138 2549 2 15 74 2294 2 1 15 255 2549
M3 4 1 57 992 2 10 29 754 2 1 14 238 992

3 digit shift
register

R0 4 1 5 128 2 3 3 60 2 1 4 68 128
R1 4 1 5 51 2 3 2 34 2 1 1 17 51
R2 4 1 5 51 2 3 2 34 2 1 1 17 51
R3 4 1 5 128 2 3 3 60 2 1 4 68 51

6. Experimental results
������� 3 compares the size of synthesized circuits with the size of MV PLA implemented the initial

function. This table shows that the present method produces the competitive results with other methods.
Because the proposed decomposition approach permits only one r-valued function to be decomposed the
functions from the standardized benchmarks are separately implemented. Here such benchmarks as 2-figure
quaternary adder, 2-figure quaternary multiplier, 3 digit shift register are used for experimental
investigations.

7. Conclusion
A new technique for realizing PLA-based combinational circuits has been proposed. This technique

yields multiple-valued circuit of reduced size. This has been illustrated by considering the realization of
functions from standardized benchmarks. Within suggested approach the novel MIN-TSUM and NOR-
TSUM expansions with respect to X1 are derived. The specific properties of TSUM operator are investigated
too. It is shown that truncated sum of r-valued variables does not submit one of the distributive laws. It
needs to take into account the consideration at examining the MIN-TSUM and NOR-TSUM expansions.

Future work is carried out in frame of generalization the proposed approach for system of MVL
functions. It leads to investigate the performance of new approach on other standardized benchmark
problem.
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Appendix 1
1. Associative laws: ( 8)   ��⊕y)⊕x=�⊕(y⊕z)
(Proof) ��1⊕�2)⊕�3=MIN (x1+x2, r-1)⊕x3=MIN (x1+x2+x3, r-1+x3, r-1) = MIN(x1+x2+x3, r-1), (a) because r-

1+z ≥r-1 for all values of z.
In other hand, �1⊕(�2⊕�3)=�1⊕MIN(x2+x3, r-1)=MIN (x1+x2+x3, r-1+x1, r-1) = MIN(x1+x2+x3, r-1),
(b) because r-1+x ≥r-1 for all values of �.
Since expressions (a) and (b) are equivalent, then TSUM operator is associative. Q.E.D.

2. Commutative laws: ( 9)    � ⊕ y = y ⊕ �
(Proof) This expression is proved using the definition of TSUM operator.
3. Identities: ( 10)   (r-1) ⊕ x=r-1
(Proof) (r-1) ⊕ x=MIN(r-1+x, r-1) =r-1,  because r-1+x≥r-1 for all values of �. Q.E.D.

 ( 11)   0 ⊕�=�
(Proof) 0⊕x=MIN(0+x, r-1) =MIN(x, r-1) = �. Q.E.D.

( 12)   �0⊕�
1⊕...⊕�

r-1=r-1
(Proof) This expression describes all input combination of x, therefore by definition of literal function Eq. (

12) takes value (r-1). Q.E.D.

( 13)    1 Λ �1 ⊕  2 Λ�
2  ⊕...⊕ (r-1) Λ �r-1=x, where the symbol Λ stands for r-valued minimum.



(Proof) x=0 Λ �0 ⊕ 1 Λ�
1 ⊕ 2 Λ �2 ⊕...⊕ (r-1) Λ �r-1=1 Λ �1 ⊕ 2 Λ �2 ⊕...⊕ (r-1) Λ �r-1, because 0 Λ�

0=0.
Q.E.D.

4. Distributive laws.
( 14)    ��Λy)⊕z=(�⊕z)(y⊕z), where x, y, z ∈{0, 1, ..., r-1}
(Proof)

a) x Λ y ⊕ z = MIN (MIN (x, y) + z, r-1) = MIN (x+z, y+z, r-1)
b) (�⊕z)(y⊕z)=MIN (x+z,r-1) Λ MIN (y+z,r-1)=MIN(MIN(x+z,r-1),MIN (y+z,r-1))=MIN (x+z, y+z, r-

1).
Since expressions (a) and (b) are equivalent, then TSUM operator submit to the distributive law.
Q.E.D.

( 15)    ��⊕y)Λz≠(�Λz) ⊕ (yΛz).
(Proof)

a) (x ⊕ y) Λ z = MIN (x+y, r-1) Λ z = MIN( MIN(x+y, r-1), z))= MIN (x+y, z, r-1).
b) (�Λz) ⊕ (yΛz)=MIN (x, z) ⊕ MIN(y, z) =MIN(MIN(x, z)+MIN(y, z), r-1) = MIN(x+y, z+x, 2z, y+z,

r-1)
Because, the expressions (a) and (b) are not equivalent, TSUM operator does not submit to the
distributive laws. Q.E.D.

( 16)    ��⊕y)Λzi=(�Λzi) ⊕ (yΛzi).
(Proof)

a) (x ⊕ y) Λ zi = MIN (x+y, r-1) Λ zi = MIN(MIN(x+y, r-1), zi)) = MIN (x+y, zi, r-1).
b) (�Λzi) ⊕ (yΛzi)= MIN(x, zi) ⊕ MIN(y, zi) =MIN(MIN(x, zi)+MIN(y, zi), r-1) = MIN(x+y, zi+x, 2zi,

y+zi, r-1)
Because zi∈{0,r-1}, then

 x� ���� z=0,
x+zi=MAX(x, y) =  x+r-1,   otherwise.
But �+r-1≥r-1, Eq. (b) takes into account variable zi, therefore x+zi and zi do not examine.
The expression y+zi is analyzed by analogy with previous expression.
(c) MIN (x+y, zi+x, 2zi, y+zi, r-1)=MIN(x+y, z, r-1).
Since expressions (a) and (c) are equivalent, then TSUM operator submits to the distributive law.
Q.E.D.
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