16,144 research outputs found

    An oil painters recognition method based on cluster multiple kernel learning algorithm

    Get PDF
    A lot of image processing research works focus on natural images, such as in classification, clustering, and the research on the recognition of artworks (such as oil paintings), from feature extraction to classifier design, is relatively few. This paper focuses on oil painter recognition and tries to find the mobile application to recognize the painter. This paper proposes a cluster multiple kernel learning algorithm, which extracts oil painting features from three aspects: color, texture, and spatial layout, and generates multiple candidate kernels with different kernel functions. With the results of clustering numerous candidate kernels, we selected the sub-kernels with better classification performance, and use the traditional multiple kernel learning algorithm to carry out the multi-feature fusion classification. The algorithm achieves a better result on the Painting91 than using traditional multiple kernel learning directly

    Viraliency: Pooling Local Virality

    Get PDF
    In our overly-connected world, the automatic recognition of virality - the quality of an image or video to be rapidly and widely spread in social networks - is of crucial importance, and has recently awaken the interest of the computer vision community. Concurrently, recent progress in deep learning architectures showed that global pooling strategies allow the extraction of activation maps, which highlight the parts of the image most likely to contain instances of a certain class. We extend this concept by introducing a pooling layer that learns the size of the support area to be averaged: the learned top-N average (LENA) pooling. We hypothesize that the latent concepts (feature maps) describing virality may require such a rich pooling strategy. We assess the effectiveness of the LENA layer by appending it on top of a convolutional siamese architecture and evaluate its performance on the task of predicting and localizing virality. We report experiments on two publicly available datasets annotated for virality and show that our method outperforms state-of-the-art approaches.Comment: Accepted at IEEE CVPR 201

    Digital image processing of the Ghent altarpiece : supporting the painting's study and conservation treatment

    Get PDF
    In this article, we show progress in certain image processing techniques that can support the physical restoration of the painting, its art-historical analysis, or both. We show how analysis of the crack patterns could indicate possible areas of overpaint, which may be of great value for the physical restoration campaign, after further validation. Next, we explore how digital image inpainting can serve as a simulation for the restoration of paint losses. Finally, we explore how the statistical analysis of the relatively simple and frequently recurring objects (such as pearls in this masterpiece) may characterize the consistency of the painter’s style and thereby aid both art-historical interpretation and physical restoration campaign

    Virtual restoration of the Ghent altarpiece using crack detection and inpainting

    Get PDF
    In this paper, we present a new method for virtual restoration of digitized paintings, with the special focus on the Ghent Altarpiece (1432), one of Belgium's greatest masterpieces. The goal of the work is to remove cracks from the digitized painting thereby approximating how the painting looked like before ageing for nearly 600 years and aiding art historical and palaeographical analysis. For crack detection, we employ a multiscale morphological approach, which can cope with greatly varying thickness of the cracks as well as with their varying intensities (from dark to the light ones). Due to the content of the painting (with extremely many fine details) and complex type of cracks (including inconsistent whitish clouds around them), the available inpainting methods do not provide satisfactory results on many parts of the painting. We show that patch-based methods outperform pixel-based ones, but leaving still much room for improvements in this application. We propose a new method for candidate patch selection, which can be combined with different patch-based inpainting methods to improve their performance in crack removal. The results demonstrate improved performance, with less artefacts and better preserved fine details

    Some Issues in the Art Image Database Systems

    Get PDF
    In this paper we illustrate several aspects of art databases, such as: the spread of the multimedia art images; the main characteristics of art images; main art images search models; unique characteristics for art image retrieval; the importance of the sensory and semantic gaps. In addition, we present several interesting features of an art image database, such as: image indexing; feature extraction; analysis on various levels of precision; style classification. We stress color features and their base, painting analysis and painting styles. We study also which MPEG-7 descriptors are best for fine painting images retrieval. An experimental system is developed to see how these descriptors work on 900 art images from several remarkable art periods. On the base of our experiments some suggestions for improving the process of searching and analysis of fine art images are given
    • …
    corecore