6 research outputs found

    Two New Types of Multiple Granulation Rough Set

    Get PDF

    Active Sample Selection Based Incremental Algorithm for Attribute Reduction with Rough Sets

    Get PDF
    Attribute reduction with rough sets is an effective technique for obtaining a compact and informative attribute set from a given dataset. However, traditional algorithms have no explicit provision for handling dynamic datasets where data present themselves in successive samples. Incremental algorithms for attribute reduction with rough sets have been recently introduced to handle dynamic datasets with large samples, though they have high complexity in time and space. To address the time/space complexity issue of the algorithms, this paper presents a novel incremental algorithm for attribute reduction with rough sets based on the adoption of an active sample selection process and an insight into the attribute reduction process. This algorithm first decides whether each incoming sample is useful with respect to the current dataset by the active sample selection process. A useless sample is discarded while a useful sample is selected to update a reduct. At the arrival of a useful sample, the attribute reduction process is then employed to guide how to add and/or delete attributes in the current reduct. The two processes thus constitute the theoretical framework of our algorithm. The proposed algorithm is finally experimentally shown to be efficient in time and space.This is a manuscript of the publication Yang, Yanyan, Degang Chen, and Hui Wang. "Active Sample Selection Based Incremental Algorithm for Attribute Reduction With Rough Sets." IEEE Transactions on Fuzzy Systems 25, no. 4 (2017): 825-838. DOI: 10.1109/TFUZZ.2016.2581186. Posted with permission.</p

    Streaming Feature Grouping and Selection (Sfgs) For Big Data Classification

    Get PDF
    Real-time data has always been an essential element for organizations when the quickness of data delivery is critical to their businesses. Today, organizations understand the importance of real-time data analysis to maintain benefits from their generated data. Real-time data analysis is also known as real-time analytics, streaming analytics, real-time streaming analytics, and event processing. Stream processing is the key to getting results in real-time. It allows us to process the data stream in real-time as it arrives. The concept of streaming data means the data are generated dynamically, and the full stream is unknown or even infinite. This data becomes massive and diverse and forms what is known as a big data challenge. In machine learning, streaming feature selection has always been a preferred method in the preprocessing of streaming data. Recently, feature grouping, which can measure the hidden information between selected features, has begun gaining attention. This dissertation’s main contribution is in solving the issue of the extremely high dimensionality of streaming big data by delivering a streaming feature grouping and selection algorithm. Also, the literature review presents a comprehensive review of the current streaming feature selection approaches and highlights the state-of-the-art algorithms trending in this area. The proposed algorithm is designed with the idea of grouping together similar features to reduce redundancy and handle the stream of features in an online fashion. This algorithm has been implemented and evaluated using benchmark datasets against state-of-the-art streaming feature selection algorithms and feature grouping techniques. The results showed better performance regarding prediction accuracy than with state-of-the-art algorithms
    corecore