32 research outputs found

    Securearray: Improving WiFi security with fine-grained physical-layer information

    Get PDF
    Despite the important role that WiFi networks play in home and enterprise networks they are relatively weak from a security standpoint. With easily available directional antennas, attackers can be physically located off-site, yet compromise WiFi security protocols such as WEP, WPA, and even to some extent WPA2 through a range of exploits specific to those protocols, or simply by running dictionary and human-factors attacks on users' poorly-chosen passwords. This presents a security risk to the entire home or enterprise network. To mitigate this ongoing problem, we propose SecureArray, a system designed to operate alongside existing wireless security protocols, adding defense in depth against active attacks. SecureArray's novel signal processing techniques leverage multi-antenna access point (AP) to profile the directions at which a client's signals arrive, using this angle-of-arrival (AoA) information to construct highly sensitive signatures that with very high probability uniquely identify each client. Upon overhearing a suspicious transmission, the client and AP initiate an AoA signature-based challenge-response protocol to confirm and mitigate the threat. We also discuss how SecureArray can mitigate direct denial-of-service attacks on the latest 802.11 wireless security protocol. We have implemented SecureArray with an eight-antenna WARP hardware radio acting as the AP. Our experimental results show that in a busy office environment, SecureArray is orders of magnitude more accurate than current techniques, mitigating 100% of WiFi spoofing attack attempts while at the same time triggering false alarms on just 0.6% of legitimate traffic. Detection rate remains high when the attacker is located only five centimeters away from the legitimate client, for AP with fewer numbers of antennas and when client is mobile

    Wireless local area network management frame denial- of-service attack detection and mitigation schemes

    Get PDF
    Wireless Local Area Networks (WLAN) are increasingly deployed and in widespread use worldwide due to its convenience and low cost. However, due to the broadcasting and the shared nature of the wireless medium, WLANs are vulnerable to a myriad of attacks. Although there have been concerted efforts to improve the security of wireless networks over the past years, some attacks remain inevitable. Attackers are capable of sending fake de-authentication or disassociation frames to terminate the session of active users; thereby leading to denial of service, stolen passwords, or leakage of sensitive information amongst many other cybercrimes. The detection of such attacks is crucial in today's critical applications. Many security mechanisms have been proposed to effectively detect these issues, however, they have been found to suffer limitations which have resulted in several potential areas of research. This thesis aims to address the detection of resource exhaustion and masquerading DoS attacks problems, and to construct several schemes that are capable of distinguishing between benign and fake management frames through the identification of normal behavior of the wireless stations before sending any authentication and de-authentication frames. Thus, this thesis proposed three schemes for the detection of resource exhaustion and masquerading DoS attacks. The first scheme was a resource exhaustion DoS attacks detection scheme, while the second was a de- authentication and disassociation detection scheme. The third scheme was to improve the detection rate of the de-authentication and disassociation detection scheme using feature derived from an unsupervised method for an increased detection rate. The effectiveness of the performance of the proposed schemes was measured in terms of detection accuracy under sophisticated attack scenarios. Similarly, the efficiency of the proposed schemes was measured in terms of preserving the resources of the access point such as memory consumptions and processing time. The validation and analysis were done through experimentation, and the results showed that the schemes have the ability to protect wireless infrastructure networks against denial of service attacks

    SecureArray: Improving wifi security with fine-grained physical-layer

    Get PDF

    Novel Physical Layer Authentication Techniques for Secure Wireless Communications

    Get PDF
    Due to the open nature of radio propagation, information security in wireless communications has been facing more challenges compared to its counterpart in wired networks. Authentication, defined as an important aspect of information security, is the process of verifying the identity of transmitters to prevent against spoofing attacks. Traditionally, secure wireless communications is achieved by relying solely upon higher layer cryptographic mechanisms. However, cryptographic approaches based on complex mathematical calculations are inefficient and vulnerable to various types of attacks. Recently, researchers have shown that the unique properties of wireless channels can be exploited for authentication enhancement by providing additional security protection against spoofing attacks. Motivated by the vulnerability of existing higher-layer security techniques and the security advantages provided by exploring the physical link properties, five novel physical layer authentication techniques to enhance the security performance of wireless systems are proposed. The first technique exploits the inherent properties of CIR to achieve robust channel-based authentication. The second and third techniques utilize a long-range channel predictor and additional multipath delay characteristics, respectively, to enhance the CIR-based authentication. The fourth technique exploits the advantages of AF cooperative relaying to improve traditional channel-based authentication. The last technique employs an embedded confidential signaling link to secure the legitimate transmissions in OFDM systems

    Improving a wireless localization system via machine learning techniques and security protocols

    Get PDF
    The recent advancements made in Internet of Things (IoT) devices have brought forth new opportunities for technologies and systems to be integrated into our everyday life. In this work, we investigate how edge nodes can effectively utilize 802.11 wireless beacon frames being broadcast from pre-existing access points in a building to achieve room-level localization. We explain the needed hardware and software for this system and demonstrate a proof of concept with experimental data analysis. Improvements to localization accuracy are shown via machine learning by implementing the random forest algorithm. Using this algorithm, historical data can train the model and make more informed decisions while tracking other nodes in the future. We also include multiple security protocols that can be taken to reduce the threat of both physical and digital attacks on the system. These threats include access point spoofing, side channel analysis, and packet sniffing, all of which are often overlooked in IoT devices that are rushed to market. Our research demonstrates the comprehensive combination of affordability, accuracy, and security possible in an IoT beacon frame-based localization system that has not been fully explored by the localization research community

    Security attacks and solutions on SDN control plane: A survey

    Get PDF
    Sommario Software Defined Networks (SDN) è un modello di rete programmabile aperto promosso da ONF , che è stato un fattore chiave per le recenti tendenze tecnologiche. SDN esplora la separazione dei dati e del piano di controllo . Diversamente dai concetti passati, SDN introduce l’idea di separazione del piano di controllo (decisioni di instradamento e traffico) e piano dati (decisioni di inoltro basate sul piano di controllo) che sfida l’integrazione verticale raggiunta dalle reti tradizionali, in cui dispositivi di rete come router e switch accumulano entrambe le funzioni. SDN presenta alcuni vantaggi come la gestione centralizzata e la possibilità di essere programmato su richiesta. Oltre a questi vantaggi, SDN presenta ancora vulnerabilità di sicurezza e, tra queste,le più letali prendono di mira il piano di controllo. Come i controllers che risiedono sul piano di con- trollo gestiscono l’infrastruttura e i dispositivi di rete sottostanti (es. router/switch), anche qualsiasi insicurezza, minacce, malware o problemi durante lo svolgimento delle attività da parte del controller, possono causare interruzioni dell’intera rete. In particolare, per la sua posizione centralizzata, il con- troller SDN è visto come un punto di fallimento. Di conseguenza, qualsiasi attacco o vulnerabilità che prende di mira il piano di controllo o il controller è considerato fatale al punto da sconvolgere l’intera rete. In questa tesi, le minacce alla sicurezza e gli attacchi mirati al piano di controllo (SDN) sono identificati e classificati in diversi gruppi in base a come causano l’impatto sul piano di controllo. Per ottenere risultati, è stata condotta un’ampia ricerca bibliografica attraverso uno studio appro- fondito degli articoli di ricerca esistenti che discutono di una serie di attacchi e delle relative soluzioni per il piano di controllo SDN. Principalmente, come soluzioni intese a rilevare, mitigare o proteggere il (SDN) sono stati presi in considerazione le potenziali minacce gli attachi al piano di controllo. Sulla base di questo compito, gli articoli selezionati sono stati classificati rispetto al loro impatto potenziale sul piano di controllo (SDN) come diretti e indiretti. Ove applicabile, è stato fornito un confronto tra le soluzioni che affrontano lo stesso attacco. Inoltre, sono stati presentati i vantaggi e gli svantaggi delle soluzioni che affrontano diversi attacchi . Infine, una discussione sui risultati e sui esitti ottenuti durante questo processo di indagine e sono stati affrontatti suggerimenti di lavoro futuri estratti du- rante il processo di revisione. Parole chiave : SDN, Sicurezza, Piano di controllo, Denial of Service, Attacchi alla topologiaAbstract Software Defined Networks (SDN) is an open programmable network model promoted by ONF that has been a key-enabler of recent technology trends. SDN explores the separation of data and control plane. Different from the past concepts, SDN introduces the idea of separation of the control plane (routing and traffic decisions) and data plane (forwarding decisions based on the control plane) that challenges the vertical integration achieved by the traditional networks, in which network devices such as router and switches accumulate both functions. SDN presents some advantages such as centralized management and the ability to be programmed on demand. Apart from these benefits, SDN still presents security vulnerabilities and among them, the most lethal ones are targeting the control plane. As the controllers residing on the control plane manages the underlying networking infrastructure and devices (i.e., routers/switches), any security threat, malware, or issues during the carrying out of activities by the controller can lead to disruption of the entire network. In particular, due to its centralized position, the (SDN) controller is seen as a single point of failure. As a result, any attack or vulnerability targeting the control plane or controller is considered fatal to the point of disrupting the whole network. In this thesis, the security threats and attacks targeting the (SDN) control plane are identified and categorized into different groups by considering how they cause an impact to the control plane. To obtain results, extensive literature research has been carried out by performing an in-depth study of the existing research articles that discusses an array of attacks and their corresponding solutions for the (SDN) control plane. Mainly, the solutions intended to detect, mitigate, or protect the (SDN) control plane against potential threats and attacks have been considered. On basis of this task, the potential articles selected were categorized with respect to their impact to the (SDN) control plane as direct and indirect. Where applicable a comparison of the solutions addressing the same attack has been provided. Moreover, the advantages and disadvantages of the solutions addressing the respective attacks are presented. Finally, a discussion regarding the findings and results obtained during this su- veying process and future work suggestions extracted during the review process have been discussed. Keywords: SDN, Security, Control Plane, Denial of Service, Topology Attacks, Openflo

    Radio Frequency Based Programmable Logic Controller Anomaly Detection

    Get PDF
    The research goal involved developing improved methods for securing Programmable Logic Controller (PLC) devices against unauthorized entry and mitigating the risk of Supervisory Control and Data Acquisition (SCADA) attack by detecting malicious software and/or trojan hardware. A Correlation Based Anomaly Detection (CBAD) process was developed to enable 1) software anomaly detection discriminating between various operating conditions to detect malfunctioning or malicious software, firmware, etc., and 2) hardware component discrimination discriminating between various hardware components to detect malfunctioning or counterfeit, trojan, etc., components

    A taxonomy of network threats and the effect of current datasets on intrusion detection systems

    Get PDF
    As the world moves towards being increasingly dependent on computers and automation, building secure applications, systems and networks are some of the main challenges faced in the current decade. The number of threats that individuals and businesses face is rising exponentially due to the increasing complexity of networks and services of modern networks. To alleviate the impact of these threats, researchers have proposed numerous solutions for anomaly detection; however, current tools often fail to adapt to ever-changing architectures, associated threats and zero-day attacks. This manuscript aims to pinpoint research gaps and shortcomings of current datasets, their impact on building Network Intrusion Detection Systems (NIDS) and the growing number of sophisticated threats. To this end, this manuscript provides researchers with two key pieces of information; a survey of prominent datasets, analyzing their use and impact on the development of the past decade's Intrusion Detection Systems (IDS) and a taxonomy of network threats and associated tools to carry out these attacks. The manuscript highlights that current IDS research covers only 33.3% of our threat taxonomy. Current datasets demonstrate a clear lack of real-network threats, attack representation and include a large number of deprecated threats, which together limit the detection accuracy of current machine learning IDS approaches. The unique combination of the taxonomy and the analysis of the datasets provided in this manuscript aims to improve the creation of datasets and the collection of real-world data. As a result, this will improve the efficiency of the next generation IDS and reflect network threats more accurately within new datasets
    corecore