37 research outputs found

    Generalising tractable VCSPs defined by symmetric tournament pair multimorphisms

    Full text link
    We study optimisation problems that can be formulated as valued constraint satisfaction problems (VCSP). A problem from VCSP is characterised by a \emph{constraint language}, a fixed set of cost functions taking finite and infinite costs over a finite domain. An instance of the problem is specified by a sum of cost functions from the language and the goal is to minimise the sum. We are interested in \emph{tractable} constraint languages; that is, languages that give rise to VCSP instances solvable in polynomial time. Cohen et al. (AIJ'06) have shown that constraint languages that admit the MJN multimorphism are tractable. Moreover, using a minimisation algorithm for submodular functions, Cohen et al. (TCS'08) have shown that constraint languages that admit an STP (symmetric tournament pair) multimorphism are tractable. We generalise these results by showing that languages admitting the MJN multimorphism on a subdomain and an STP multimorphisms on the complement of the subdomain are tractable. The algorithm is a reduction to the algorithm for languages admitting an STP multimorphism.Comment: 14 page

    The complexity of the list homomorphism problem for graphs

    Get PDF
    We completely classify the computational complexity of the list H-colouring problem for graphs (with possible loops) in combinatorial and algebraic terms: for every graph H the problem is either NP-complete, NL-complete, L-complete or is first-order definable; descriptive complexity equivalents are given as well via Datalog and its fragments. Our algebraic characterisations match important conjectures in the study of constraint satisfaction problems.Comment: 12 pages, STACS 201

    Binary simple homogeneous structures are supersimple with finite rank

    Full text link
    Suppose that M is an infinite structure with finite relational vocabulary such that every relation symbol has arity at most 2. If M is simple and homogeneous then its complete theory is supersimple with finite SU-rank which cannot exceed the number of complete 2-types over the empty set

    The complexity of conservative finite-valued CSPs

    Full text link
    We study the complexity of valued constraint satisfaction problems (VCSP). A problem from VCSP is characterised by a \emph{constraint language}, a fixed set of cost functions over a finite domain. An instance of the problem is specified by a sum of cost functions from the language and the goal is to minimise the sum. We consider the case of so-called \emph{conservative} languages; that is, languages containing all unary cost functions, thus allowing arbitrary restrictions on the domains of the variables. This problem has been studied by Bulatov [LICS'03] for {0,∞}\{0,\infty\}-valued languages (i.e. CSP), by Cohen~\etal\ (AIJ'06) for Boolean domains, by Deineko et al. (JACM'08) for {0,1}\{0,1\}-valued cost functions (i.e. Max-CSP), and by Takhanov (STACS'10) for {0,∞}\{0,\infty\}-valued languages containing all finite-valued unary cost functions (i.e. Min-Cost-Hom). We give an elementary proof of a complete complexity classification of conservative finite-valued languages: we show that every conservative finite-valued language is either tractable or NP-hard. This is the \emph{first} dichotomy result for finite-valued VCSPs over non-Boolean domains.Comment: 15 page

    Testing List H-Homomorphisms

    Full text link
    Let HH be an undirected graph. In the List HH-Homomorphism Problem, given an undirected graph GG with a list constraint L(v)βŠ†V(H)L(v) \subseteq V(H) for each variable v∈V(G)v \in V(G), the objective is to find a list HH-homomorphism f:V(G)β†’V(H)f:V(G) \to V(H), that is, f(v)∈L(v)f(v) \in L(v) for every v∈V(G)v \in V(G) and (f(u),f(v))∈E(H)(f(u),f(v)) \in E(H) whenever (u,v)∈E(G)(u,v) \in E(G). We consider the following problem: given a map f:V(G)β†’V(H)f:V(G) \to V(H) as an oracle access, the objective is to decide with high probability whether ff is a list HH-homomorphism or \textit{far} from any list HH-homomorphisms. The efficiency of an algorithm is measured by the number of accesses to ff. In this paper, we classify graphs HH with respect to the query complexity for testing list HH-homomorphisms and show the following trichotomy holds: (i) List HH-homomorphisms are testable with a constant number of queries if and only if HH is a reflexive complete graph or an irreflexive complete bipartite graph. (ii) List HH-homomorphisms are testable with a sublinear number of queries if and only if HH is a bi-arc graph. (iii) Testing list HH-homomorphisms requires a linear number of queries if HH is not a bi-arc graph

    A Galois Connection for Weighted (Relational) Clones of Infinite Size

    Full text link
    A Galois connection between clones and relational clones on a fixed finite domain is one of the cornerstones of the so-called algebraic approach to the computational complexity of non-uniform Constraint Satisfaction Problems (CSPs). Cohen et al. established a Galois connection between finitely-generated weighted clones and finitely-generated weighted relational clones [SICOMP'13], and asked whether this connection holds in general. We answer this question in the affirmative for weighted (relational) clones with real weights and show that the complexity of the corresponding valued CSPs is preserved
    corecore