83,490 research outputs found

    Robust object tracking algorithms using C++ and MATLAB

    Get PDF
    Object tracking, all in all, is a testing issue. Troubles in tracking objects emerge because of unexpected motion of the object, scene appearance change, object appearance change, structures of objects that are not rigid. Besides this full and partial occlusions and motion of the camera also pose challenges. Commonly, we make some assumptions to oblige the tracking issue in the connection of a specific provision. Ordinarily it gets important to track all the moving objects in the real time video. Tracking using colour performs well when the colour of the target is unique compared to its background. Tracking using the contours as a feature is very effective even for non-rigid targets. Tracking using spatial histogram gives satisfactory results even though the target object undergoes size change or has similar coloured background. In this project robust algorithms based on colour, contour and spatiograms to track moving objects have been studied, proposed and implemented

    Investigation of a new method for improving image resolution for camera tracking applications

    Get PDF
    Camera based systems have been a preferred choice in many motion tracking applications due to the ease of installation and the ability to work in unprepared environments. The concept of these systems is based on extracting image information (colour and shape properties) to detect the object location. However, the resolution of the image and the camera field-of- view (FOV) are two main factors that can restrict the tracking applications for which these systems can be used. Resolution can be addressed partially by using higher resolution cameras but this may not always be possible or cost effective. This research paper investigates a new method utilising averaging of offset images to improve the effective resolution using a standard camera. The initial results show that the minimum detectable position change of a tracked object could be improved by up to 4 times

    Combination of Mean Shift of Colour Signature and Optical Flow for Tracking During Foreground and Background Occlusion

    Get PDF
    This paper proposes a multiple hypothesis tracking for multiple object tracking with moving camera. The proposed model makes use of the stability of sparse optical flow along with the invariant colour property under size and pose variation, by merging the colour property of objects into optical flow tracking. To evaluate the algorithm five different videos are selected from broadcast horse races where each video represents different challenges that present in object tracking literature. A comparison study of the proposed method, with a colour based mean shift tracking proves the significant improvement in accuracy and stability of object tracking

    Video analytics for security systems

    Get PDF
    This study has been conducted to develop robust event detection and object tracking algorithms that can be implemented in real time video surveillance applications. The aim of the research has been to produce an automated video surveillance system that is able to detect and report potential security risks with minimum human intervention. Since the algorithms are designed to be implemented in real-life scenarios, they must be able to cope with strong illumination changes and occlusions. The thesis is divided into two major sections. The first section deals with event detection and edge based tracking while the second section describes colour measurement methods developed to track objects in crowded environments. The event detection methods presented in the thesis mainly focus on detection and tracking of objects that become stationary in the scene. Objects such as baggage left in public places or vehicles parked illegally can cause a serious security threat. A new pixel based classification technique has been developed to detect objects of this type in cluttered scenes. Once detected, edge based object descriptors are obtained and stored as templates for tracking purposes. The consistency of these descriptors is examined using an adaptive edge orientation based technique. Objects are tracked and alarm events are generated if the objects are found to be stationary in the scene after a certain period of time. To evaluate the full capabilities of the pixel based classification and adaptive edge orientation based tracking methods, the model is tested using several hours of real-life video surveillance scenarios recorded at different locations and time of day from our own and publically available databases (i-LIDS, PETS, MIT, ViSOR). The performance results demonstrate that the combination of pixel based classification and adaptive edge orientation based tracking gave over 95% success rate. The results obtained also yield better detection and tracking results when compared with the other available state of the art methods. In the second part of the thesis, colour based techniques are used to track objects in crowded video sequences in circumstances of severe occlusion. A novel Adaptive Sample Count Particle Filter (ASCPF) technique is presented that improves the performance of the standard Sample Importance Resampling Particle Filter by up to 80% in terms of computational cost. An appropriate particle range is obtained for each object and the concept of adaptive samples is introduced to keep the computational cost down. The objective is to keep the number of particles to a minimum and only to increase them up to the maximum, as and when required. Variable standard deviation values for state vector elements have been exploited to cope with heavy occlusion. The technique has been tested on different video surveillance scenarios with variable object motion, strong occlusion and change in object scale. Experimental results show that the proposed method not only tracks the object with comparable accuracy to existing particle filter techniques but is up to five times faster. Tracking objects in a multi camera environment is discussed in the final part of the thesis. The ASCPF technique is deployed within a multi-camera environment to track objects across different camera views. Such environments can pose difficult challenges such as changes in object scale and colour features as the objects move from one camera view to another. Variable standard deviation values of the ASCPF have been utilized in order to cope with sudden colour and scale changes. As the object moves from one scene to another, the number of particles, together with the spread value, is increased to a maximum to reduce any effects of scale and colour change. Promising results are obtained when the ASCPF technique is tested on live feeds from four different camera views. It was found that not only did the ASCPF method result in the successful tracking of the moving object across different views but also maintained the real time frame rate due to its reduced computational cost thus indicating that the method is a potential practical solution for multi camera tracking applications

    Active Contour-Based Visual Tracking by Integrating Colors, Shapes, and Motions Using Level Sets

    Get PDF
    Using a camera,the visual object tracking is one of the most important process in searching the spot of moving object over the time. In the case of the object moves fast relative to the frame rate,the visual object tracking is difficult task. The active contour evolution algorithm which is used for the tracking of object in a given frame of an image sequence. Active contour based visual object tracking using the level sets is proposed which does not consider the camera either stationary or moving. We present a framework for active contour-based visual object tracking using the level sets. The main components of our framework consist of the contour-based tracking initialization, colour-based contour evolution, the adaptive shape-based contour evolution for the non-periodic motions, the dynamic shape-based contour evolution for the periodic motions and handling of the abrupt motions. For the contour-based tracking initialization, we use an optical flow-based algorithm for the automatically initializing contours at the first frame. In the color-based contour evolution, we use Markov random field theory to measure correlations between values of the neighboring pixels for the posterior probability estimation.In the adaptive shape-based contour evolution, we combined the global shape information and the local color information to hierarchically develop gradually the contour, and a flexible shape updating model is made. In the dynamic shape based contour evolution, a shape mode transition matrix is gain to characterize the temporal correlations of the object shapes. In the handling of abrupt motions, particle swarm optimization (PSO) is used to capture the global motion which is applied to the contour in the current frame to produce an initial contour in the next frame. DOI: 10.17762/ijritcc2321-8169.15013

    A Novel Histogram-Based Multi-Threshold Searching Algorithm for Multilevel Color Thresholding

    Get PDF
    [[abstract]]Image segmentation is an important preliminary process required in object tracking applications. This paper addresses the issue of unsupervised multi‐colour thresholding design for colour‐based multiple objects segmentation. Most of the current unsupervised colour thresholding techniques require adopting a supervised training algorithm or a cluster‐number decision algorithm to obtain optimal threshold values of each colour channel for a colour‐of‐interest. In this paper, a novel unsupervised multi‐threshold searching algorithm is proposed to automatically search the optimal threshold values for segmenting multiple colour objects. To achieve this, a novel ratio‐map image computation method is proposed to efficiently enhance the contrast between colour and non¬colour pixels. The Otsu’s method is then applied to the ratio‐map image to extract all colour objects from the image. Finally, a new histogram‐based multi‐threshold searching algorithm is developed to search the optimal upper‐bound and lower‐bound threshold values of hue, saturation and brightness components for each colour object. Experimental results show that the proposed method not only succeeds in separating all colour objects-of-interest in colour images, but also provides satisfactory colour thresholding results compared with an existing multilevel thresholding method.[[notice]]補正完畢[[incitationindex]]SCI[[incitationindex]]EI[[booktype]]電子版[[booktype]]紙

    Object Tracking in Video with Part-Based Tracking by Feature Sampling

    Get PDF
    Visual tracking of arbitrary objects is an active research topic in computer vision, with applications across multiple disciplines including video surveillance, activity analysis, robot vision, and human computer interface. Despite great progress having been made in object tracking in recent years, it still remains a challenge to design trackers that can deal with difficult tracking scenarios, such as camera motion, object motion change, occlusion, illumination changes, and object deformation. A promising way of tackling these types of problems is to use a part-based method; one which models and tracks small regions of the object and estimates the location of the object based on the tracked part's positions. These approaches typically model parts of objects with histograms of various hand-crafted features extracted from the region in which the part is located. However, it is unclear how such relatively homogeneous regions should be represented to form an effective part-based tracker. In this thesis we present a part-based tracker that includes a model for object parts that is designed to empirically characterise the underlying colour distribution of an image region, representing it by pairs of randomly selected colour features and counts of how many pixels are similar to each feature. This novel feature representation is used to find probable locations for the part in future frames via a Bhattacharyya Distance-based metric, which is modified to prefer higher quality matches. Sets of candidate patch locations are generated by randomly generating non-shearing affine transformations of the part's previous locations and locally optimising the most likely sets of parts to allow for small intra-frame object deformations. We also present a study of model initialisation in online, model-free tracking and evaluate several techniques for selecting the regions of an image, given a target bounding box most likely to contain an object. The strengths and limitations of the combined tracker are evaluated on the VOT2016 and VOT2018 datasets using their evaluation protocol, which also allows an extensive evaluation of parameter robustness. The presented tracker is ranked first among part-based trackers on the VOT2018 dataset and is particularly robust to changes in object and camera motion, as well as object size changes
    corecore