1,762 research outputs found

    Kernelization and Sparseness: the case of Dominating Set

    Get PDF
    We prove that for every positive integer rr and for every graph class G\mathcal G of bounded expansion, the rr-Dominating Set problem admits a linear kernel on graphs from G\mathcal G. Moreover, when G\mathcal G is only assumed to be nowhere dense, then we give an almost linear kernel on G\mathcal G for the classic Dominating Set problem, i.e., for the case r=1r=1. These results generalize a line of previous research on finding linear kernels for Dominating Set and rr-Dominating Set. However, the approach taken in this work, which is based on the theory of sparse graphs, is radically different and conceptually much simpler than the previous approaches. We complement our findings by showing that for the closely related Connected Dominating Set problem, the existence of such kernelization algorithms is unlikely, even though the problem is known to admit a linear kernel on HH-topological-minor-free graphs. Also, we prove that for any somewhere dense class G\mathcal G, there is some rr for which rr-Dominating Set is W[22]-hard on G\mathcal G. Thus, our results fall short of proving a sharp dichotomy for the parameterized complexity of rr-Dominating Set on subgraph-monotone graph classes: we conjecture that the border of tractability lies exactly between nowhere dense and somewhere dense graph classes.Comment: v2: new author, added results for r-Dominating Sets in bounded expansion graph

    Parameterized Algorithms for Modular-Width

    Full text link
    It is known that a number of natural graph problems which are FPT parameterized by treewidth become W-hard when parameterized by clique-width. It is therefore desirable to find a different structural graph parameter which is as general as possible, covers dense graphs but does not incur such a heavy algorithmic penalty. The main contribution of this paper is to consider a parameter called modular-width, defined using the well-known notion of modular decompositions. Using a combination of ILPs and dynamic programming we manage to design FPT algorithms for Coloring and Partitioning into paths (and hence Hamiltonian path and Hamiltonian cycle), which are W-hard for both clique-width and its recently introduced restriction, shrub-depth. We thus argue that modular-width occupies a sweet spot as a graph parameter, generalizing several simpler notions on dense graphs but still evading the "price of generality" paid by clique-width.Comment: to appear in IPEC 2013. arXiv admin note: text overlap with arXiv:1304.5479 by other author

    Extremal results in sparse pseudorandom graphs

    Get PDF
    Szemer\'edi's regularity lemma is a fundamental tool in extremal combinatorics. However, the original version is only helpful in studying dense graphs. In the 1990s, Kohayakawa and R\"odl proved an analogue of Szemer\'edi's regularity lemma for sparse graphs as part of a general program toward extending extremal results to sparse graphs. Many of the key applications of Szemer\'edi's regularity lemma use an associated counting lemma. In order to prove extensions of these results which also apply to sparse graphs, it remained a well-known open problem to prove a counting lemma in sparse graphs. The main advance of this paper lies in a new counting lemma, proved following the functional approach of Gowers, which complements the sparse regularity lemma of Kohayakawa and R\"odl, allowing us to count small graphs in regular subgraphs of a sufficiently pseudorandom graph. We use this to prove sparse extensions of several well-known combinatorial theorems, including the removal lemmas for graphs and groups, the Erd\H{o}s-Stone-Simonovits theorem and Ramsey's theorem. These results extend and improve upon a substantial body of previous work.Comment: 70 pages, accepted for publication in Adv. Mat
    • …
    corecore