417 research outputs found

    Biologically-inspired Neural Networks for Shape and Color Representation

    Get PDF
    The goal of human-level performance in artificial vision systems is yet to be achieved. With this goal, a reasonable choice is to simulate this biological system with computational models that mimic its visual processing. A complication with this approach is that the human brain, and similarly its visual system, are not fully understood. On the bright side, with remarkable findings in the field of visual neuroscience, many questions about visual processing in the primate brain have been answered in the past few decades. Nonetheless, a lag in incorporating these new discoveries into biologically-inspired systems is evident. The present work introduces novel biologically-inspired models that employ new findings of shape and color processing into analytically-defined neural networks. In contrast to most current methods that attempt to learn all aspects of behavior from data, here we propose to bootstrap such learning by building upon existing knowledge rather than learning from scratch. Put simply, the processing networks are defined analytically using current neural understanding and learned where such knowledge is not available. This is thus a hybrid strategy that hopefully combines the best of both worlds. Experiments on the artificial neurons in the proposed networks demonstrate that these neurons mimic the studied behavior of biological cells, suggesting a path forward for incorporating analytically-defined artificial neural networks into computer vision systems

    Color in scientific visualization: Perception and image-based data display

    Get PDF
    Visualization is the transformation of information into a visual display that enhances users understanding and interpretation of the data. This thesis project has investigated the use of color and human vision modeling for visualization of image-based scientific data. Two preliminary psychophysical experiments were first conducted on uniform color patches to analyze the perception and understanding of different color attributes, which provided psychophysical evidence and guidance for the choice of color space/attributes for color encoding. Perceptual color scales were then designed for univariate and bivariate image data display and their effectiveness was evaluated through three psychophysical experiments. Some general guidelines were derived for effective color scales design. Extending to high-dimensional data, two visualization techniques were developed for hyperspectral imagery. The first approach takes advantage of the underlying relationships between PCA/ICA of hyperspectral images and the human opponent color model, and maps the first three PCs or ICs to several opponent color spaces including CIELAB, HSV, YCbCr, and YUV. The gray world assumption was adopted to automatically set the mapping origins. The rendered images are well color balanced and can offer a first look capability or initial classification for a wide variety of spectral scenes. The second approach combines a true color image and a PCA image based on a biologically inspired visual attention model that simulates the center-surround structure of visual receptive fields as the difference between fine and coarse scales. The model was extended to take into account human contrast sensitivity and include high-level information such as the second order statistical structure in the form of local variance map, in addition to low-level features such as color, luminance, and orientation. It generates a topographic saliency map for both the true color image and the PCA image, a difference map is then derived and used as a mask to select interesting locations where the PCA image has more salient features than available in the visible bands. The resulting representations preserve consistent natural appearance of the scene, while the selected attentional locations may be analyzed by more advanced algorithms

    The Constructive Nature of Color Vision and Its Neural Basis

    Get PDF
    Our visual world is made up of colored surfaces. The color of a surface is physically determined by its reflectance, i.e., how much energy it reflects as a function of wavelength. Reflected light, however, provides only ambiguous information about the color of a surface as it depends on the spectral properties of both the surface and the illumination. Despite the confounding effects of illumination on the reflected light, the visual system is remarkably good at inferring the reflectance of a surface, enabling observers to perceive surface colors as stable across illumination changes. This capacity of the visual system is called color constancy and it highlights that color vision is a constructive process. The research presented here investigates the neural basis of some of the most relevant aspects of the constructive nature of human color vision using machine learning algorithms and functional neuroimaging. The experiments demonstrate that color-related prior knowledge influences neural signals already in the earliest area of visual processing in the cortex, area V1, whereas in object imagery, perceived color shared neural representations with the color of the imagined objects in human V4. A direct test for illumination-invariant surface color representation showed that neural coding in V1 as well as a region anterior to human V4 was robust against illumination changes. In sum, the present research shows how different aspects of the constructive nature of color vision can be mapped to different regions in the ventral visual pathway

    ON THE LOGIC, METHOD AND SCIENTIFIC DIVERSITY OF TECHNICAL SYSTEMS: AN INQUIRY INTO THE DIAGNOSTIC MEASUREMENT OF HUMAN SKIN

    Get PDF
    This dissertation explores some of the scientific, technical and cultural history of human skin measurement and diagnostics. Through a significant collection of primary texts and case studies, I track the changing technologies and methods used to measure skin, as well as the scientific and sociotechnical applications. I then map these histories onto some of the diverse understandings of the human body, physics, biology, natural philosophy and language that underpinned the scientific enterprise of skin measurement. The main argument of my thesis demonstrates how these diverse histories of science historically and theoretically inform the succeeding methods and applications for skin measurement from early Greek medicine, to beginnings of Anthropology as scientific discipline, to the emergence of scientific racism, to the age of digital imaging analysis, remote sensing, algorithms, massive databases and biometric technologies; further, these new digital applications go beyond just health diagnostics and are creating new technical categorizations of human skin divorced from the established ethical mechanisms of modern science. Based on this research, I inquire how communication practices within the scientific enterprise address the ethical and historical implications for a growing set of digital biometric applications with industrial, military, sociopolitical and public functions

    SIMULATING HIERARCHICAL STRUCTURE OF HUMAN VISUAL CORTEX FOR IMAGE CLASSIFICATION

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Colour Communication Within Different Languages

    Get PDF
    For computational methods aiming to reproduce colour names that are meaningful to speakers of different languages, the mapping between perceptual and linguistic aspects of colour is a problem of central information processing. This thesis advances the field of computational colour communication within different languages in five main directions. First, we show that web-based experimental methodologies offer considerable advantages in obtaining a large number of colour naming responses in British and American English, Greek, Russian, Thai and Turkish. We continue with the application of machine learning methods to discover criteria in linguistic, behavioural and geometric features of colour names that distinguish classes of colours. We show that primary colour terms do not form a coherent class, whilst achromatic and basic classes do. We then propose and evaluate a computational model trained by human responses in the online experiment to automate the assignment of colour names in different languages across the full three-dimensional colour gamut. Fourth, we determine for the first time the location of colour names within a physiologically-based cone excitation space through an unconstrained colour naming experiment using a calibrated monitor under controlled viewing conditions. We show a good correspondence between online and offline datasets; and confirm the validity of both experimental methodologies for estimating colour naming functions in laboratory and real-world monitor settings. Finally, we present a novel information theoretic measure, called dispensability, for colour categories that predicts a gradual scale of basicness across languages from both web- and laboratory- based unconstrained colour naming datasets. As a result, this thesis contributes experimental and computational methodologies towards the development of multilingual colour communication schemes
    corecore