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Summary

Image recognition is one of the most challenging problems in computer

science due to different illumination, viewpoints, occlusions, scale and shift

transforms in the images. Hence no computer vision approach has been

capable of dealing with all these issues to provide a complete solution. On

the other hand, the human visual system is considered a superior model for

various visual recognition tasks such as image segmentation and classifica-

tion as well as face and motion recognition. Exceptional fast performance

of human visual system on image recognition tasks under different resolu-

tions (scales), translations, rotations and lighting conditions has motivated

researchers to study the mechanisms performed in the human and other

mammals’ visual system and to simulate them. Recent achievements in

biologically inspired models have motivated us to further analyze these

hierarchical structure models and investigate possible extensions to them.

In this thesis, we study several hierarchical models for image classifica-

tion that are biologically inspired and simulate some known characteristics

of visual cortex.

We base our investigation on the HMAX model, which is a well-known

biologically inspired model (Riesenhuber and Poggio, 1999), and extend this

model in several aspects such as adding clustering of features, evaluating

different pooling methods, using mean pooling (HMean) and max pooling

in the model as well as coding occurrences and co-occurrences of features
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with the goal of improving the image classification accuracy on benchmark

datasets such as Caltech101 and a subset of Caltech256 (classes with a

higher number of training images) and an underwater image dataset. We

introduce several self organizing maps and clustering methods in order to

build mid-level dictionary of features. We also investigate the use of differ-

ent pooling methods and show that concatenation of biologically inspired

mean pooling with max pooling as well as enhanced models for encoding

occurrences and co-occurrences of features on a biological feasibility basis

improves the image classification results.

We further propose a new high-level biologically inspired color model,

CQ-HMAX, which can achieve better performances than the state-of-the-

art using the bottom-up approaches when combined with other low-level

biologically inspired color models and HMean on several datasets such as

Caltech101, Soccer, Flowers and Scenes. We introduce a new dataset of

benthic marine organisms and compare different proposed methods.

We also propose an HMAX like structure for simulating auditory cortex

and create sonar images and combine them with visual images for under-

water image classification in poor visibility conditions. We also show the

use of HMAX and CQ-HMAX models on other tasks such as detection of

mitosis in histopatholgy images and propose several future directions on

this field of study.
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Chapter 1

Introduction

1.1 Background and Motivations

Image classification includes a broad range of approaches to the identifi-

cation of images or parts of them. In classification of images, each image is

assumed to have a series of features that distinguish that particular image

from other images. Different approaches are proposed to extract features

such as geometric parts, spectral regions, histogram of pixels in color or

grayscale, using templates of the target of interest or other features from

images. These approaches generally fall into two categories, namely, super-

vised and unsupervised (or a combination of them).

These approaches can be bottom-up, top-down, or interactive based on

the contextual information from the images. Object rotations, occlusions,

different viewpoints, scales and lighting in the images are among the factors

that make image classification a complex process. As a result, the complete

method that can incorporate all these issues based on the computational

1



approaches of computer vision has not been successful.

On the other hand, human visual capabilities in dealing with these is-

sues have inspired many scientists to study the visual cortex of humans

and other mammals to gain a better understanding of it and to simulate

how these processes take place in the brain based on the current findings.

In addition there is active ongoing research in both directions (biologi-

cally inspired methods and computer vision approaches) towards a holistic

framework that can deal with all these issues.

1.2 Human Visual Cortex

Research on the human visual cortex suggests a hierarchical structure

in which each level of the hierarchy is assumed to be responsible for specific

roles and sends its output to the higher levels, as can be seen in Figure 1.1.

Figure 1.1: Different roles proposed for different layers of human visual system

hierarchy in Goldstein (2009).
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Visual cortex is a part of the cerebral cortex located in the occipital

lobe, which includes striate cortex or V 1 and extrastriate visual cortical

areas such as V 2, V 3, V 4 and V 5/MT, and is responsible for processing

visual information. The information acquired by V 1 is transmitted in two

primary pathways called the dorsal and ventral streams. The dorsal stream

begins with V 1, goes through V 2 and V 5/MT and to the posterior pari-

etal cortex. This pathway is also referred to as “Where pathway” or “How

pathway”. The ventral stream, begins with V 1, followed by V 2 and V 4 and

to the inferior temporal cortex (IT). This pathway is also called the “What

pathway” which is associated with the recognition and object representa-

tion and storage of long term memory (Mishkin et al., 1983). These layers

have interactions with each other via feedback, feedforward and inter-level

connections.

Object recognition in cortex is thought to be mediated by the ventral

visual pathway running from primary visual cortex, V 1, over extrastriate

visual areas V 2 and V 4 to inferotemporal cortex, IT Riesenhuber and Pog-

gio (1999).

Over the last decades, several physiological studies in non-human pri-

mates have established a core of basic facts about cortical mechanisms

of recognition that seem to be widely accepted and that confirm and re-

fine older data from neuropsychology. A brief summary of this consensus

knowledge begins with the ground-breaking work of Hubel and Wiesel first

in the cats (Hubel and Wiesel, 1962, 1965) and then in the macaque (Hubel

and Wiesel, 1968). Starting from simple cells in primary visual cortex, V 1,

3



with small receptive fields that respond preferably to oriented bars, neu-

rons along the ventral stream show an increase in receptive field size as

well as in the complexity of their preferred stimuli Riesenhuber and Poggio

(1999). At the top of the ventral stream, in anterior inferotemporal cortex

(AIT), cells are tuned to complex stimuli such as faces. A hallmark of these

IT cells is the robustness of their firing to stimulus transformations such

as scale and position changes. In addition, as other studies have shown,

most neurons show specificity for a certain object view or lighting condition

(Sigala et al., 2005; Olshausen et al., 1993).

Since Hubel and Wiesel (1959) introduced simple and complex cells in

the early processing in visual system (Figure 1.2), a series of models were

proposed to simulate this hierarchical structure. HMAX Riesenhuber and

Poggio (1999) and HTM (George, 2008) are among these models. Some

other biologically inspired models are tackling the problem with a more

probabilistic approach like Deep Belief Networks (DBN) (Hinton et al.,

2006) using Restricted Boltzmann Machines (RBM) which will be further

discussed in Chapter 2.

There are also computational evidences that hierarchical structures such

as spatial pyramid matching and deep belief networks are more powerful

than traditional linear approaches. Computationally speaking, functions

that can be compactly represented by a depth k architecture might require

an exponential number of computational elements to be represented by a

depth k− 1 architecture. Since the number of computational elements one

can afford depends on the number of training examples available to tune

4



Figure 1.2: Hubel and Wiesel’s model of simple and complex cells in visual cortex

(right) and HMAX simulation (left).

or select them, the consequences are not just computational but also sta-

tistical: poor generalization may be expected when using an insufficiently

deep architecture for representing some functions (Bengio, 2009).

The depth of an architecture is the maximum length of a path from any

input of the graph to any output of the graph. Although depth depends on

the choice of the set of allowed computations for each element, theoretical

results suggest that it is not the absolute number of levels that matters,

but the number of levels relative to how many are required to represent the

target function efficiently (Bengio, 2009). Kernel machines, with a fixed

kernel can be considered as two level structures. Boosting usually adds

one level to its base learners. Artificial neural networks normally have two

hidden layers and can be considered two layer structures. Decision trees

are also considered two layer structures. According to the observations we

have from the human’s visual system, there are several layers in the brain

that work in a hierarchical structure to interpret the images and perform

cognition and recognition in the brain (Serre et al., 2007a).

5



1.3 HMAX Biologically Inspired Model

HMAX, proposed by Riesenhuber and Poggio (1999), is a model that

simulates the simple-complex cell hierarchy in the visual cortex. The model

reflects the general organization of visual cortex in a series of layers from

V 1 to IT to PFC. In the standard HMAX model, there are four layers

of hierarchy (namely, S1, C1, S2 and C2) that create the features for

the classifier and there is a supervised classifier on top as can be seen in

Figure 1.3. A pyramid of Gaussian filters are convolved on the images in

S1 layer, and a local max is calculated on small neighborhoods in C1 layer.

A handmade dictionary of features that contains more complex features is

convolved on the C1 layer, and the S2 layer is thus created. A global max

is taken on S2 layer to create the C2 layer, and the outputs are then fed

to a classifier such as a support vector machine (SVM).

Subsequent extensions to this model have improved it for image classi-

fication tasks to compete with the state-of-the-art computational models.

We will explain the HMAX model in more detail and provide an extensive

review on the extensions to the base model in Chapter 2. Serre and Riesen-

huber modified the standard HMAX structure and released a new version

of this structure (Serre and Riesenhuber, 2004). Gabor filters were used

instead of second order Gaussian derivatives in S1 layer, and the number of

filter sizes was increased. They also changed the values of scale range and

pool range parameters in standard HMAX in C1 layer to provide less scale

tolerance and therefore narrower spatial frequency bandwidth (Serre and

Riesenhuber, 2004). Two other layers were added to the standard model to
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simulate bypassing of information. This model includes S2b, S3, C2b, C3,

and S4. They also suggested a random sampling of features from C1 layer

in order to replace the handmade dictionary of features in HMAX model.

Mutch et al. (Mutch and Lowe, 2008; Mutch et al., 2010a) proposed a

series of computational modifications to the structure proposed by Serre et

al.’s model. In this model, a fixed size of Gabor filters is implemented on

different scales of the images which provides the same invariance to scale

for Gabor filters (Mutch and Lowe, 2008, 2006). They also investigated

the use of Sparse features. Theriault et al. (2011) suggested using multi-

scale sparse features and replaced Guassian response in S2 layer with a

normalized dot product.

1.4 Scope, Contributions and Organization

of Thesis

In this thesis, we propose several modifications, enhancements and ap-

plications for HMAX model as follows:

(i) Non-random sampling methods for creation of the dictionary of fea-

tures such as clustering and saliency points;

(ii) Different pooling methods and encoding occurrences and co-occurrences

of features in the intermediate layers;

(iii) A new high-level biologically inspired color model (CQ-HMAX); and

(iv) Applications of HMAX model in other image classification tasks.

7



All the modification made to the main model are biologically inspired

or consistent with the existing evidence from the visual cortex mechanisms,

which we will illuminate in detail in the following Chapters.

In Chapter 2, we have an overview, comparison and a discussion on sev-

eral pertinent models available in the literature. We introduce biologically

inspired models such as HTM (George, 2008), LeNet (LeCun and Ben-

gio, 1995), Dynamic Routing Model (Olshausen et al., 1993), Hierarchical

Statistical Learning (Fidler et al., 2008), Top-Down Hierarchy of Features

(Bart et al., 2004) , NeoCognitron (Fukushima, 1980) and computational

approach of bag of features (Li and Perona, 2005), DBN (Hinton et al.,

2006) and HMAX model (Riesenhuber and Poggio, 1999).

In Chapter 3 we investigate HMAX model in more detail and review

the main modifications made to it. We discuss this model and provide

several modifications and improvements built on top of the previous en-

hancements to the model which are both biologically inspired and result

in better classification performances on different datasets over the existing

HMAX model performance.

The general structure of HMAX model is shown in Figure 1.3 and the

main contribution areas to be covered in this thesis are highlighted by red

circles.

In Chapter 4 we present modifications to the creation of the dictio-

nary of features using several self organizing maps, clustering methods and

saliency points selection and discuss the significant improvement that is

achieved by using spatial and frequency information of the features in the

8



Figure 1.3: A summary of main contributions on the HMAX model.
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creation of the dictionary of features.

In Chapter 5 we incorporate the mean pooling method into HMAX

(named HMean), and provide different methods for encoding occurrences

and co-occurrences of complex features in the HMAX model. The concate-

nation of HMean and HMAX models results in significant improvements

over classification results in several datasets. Encoding co-occurrences of

features without any top-down or heuristic interactions further improves

the classification results when a higher number of training images is avail-

able.

In Chapter 6 we introduce a new biologically inspired high-level color

approach, CQ-HMAX which is similar to HMAX in structure and show that

using this model, we can achieve higher classification accuracy on several

datasets and concatenation of this model with the low-level biologically in-

spired color model of Zhang et al. (2012) further improves the classification

performance to performances as good or better than the state-of-the-art

bottom-up approaches on several benchmark color datasets.

Chapter 7 provides some applications of the HMAX model in other

datasets such as benthic marine organisms and mitosis detection. We show

that higher classification results can be achieved using HMAX feature when

compared with some other well-known techniques that deploy popular fea-

ture extraction/cassification such as SIFT (Lowe, 1999). We also propose

a new structure using HMAX model in simulating acoustic information

acquired from underwater sonar systems to resemble the marine mammal

auditory and visual systems and show that a combination of visual and
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sonar images results in a better classification accuracy in poor underwater

visibility conditions.

We provide a discussion in Chapter 8 followed by further suggestions

for the future directions for this interesting field of research.
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Chapter 2

A Review of Related Models

in Image Classification

This chapter introduces the most well-known hierarchical and biologi-

cally inspired models that are used for image classification and are related

to our model and discuss these models. Chapter 3 will provide a detailed

description of the HMAX model and its various extensions.

Here we briefly introduce the following biologically inspired models:

• Dynamic Routing Model;

• Top-Down Hierarchy of Features; and

• Interactive Activation and Competition Model.

Dynamic Routing Model and Top-Down Hierarchy of Features are two

hierarchical models that have demonstrated significant improvements over

non-hierarchical models. We also introduce Deep Belief Networks (DBN)

which have a hierarchical statistical structure that resembles some of the
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characteristics of the human visual cortex and introduce Bag of Features

(BoF) method which has been among successful computer vision approaches:

• DBN; and

• Bag of Features.

We introduce DBN as a successful hierarchical structure and draw in-

spirations from the BoF method for encoding the occurrences of features

in HMAX model.

We introduce Hierarchical Temporal Memory, LeNet, NeoCognitron,

Hierarchical Statistical Learning and HMAX models which have a similar

simple-complex cells structure based on the hierarchical structure proposed

by Hubel and Wiesel (1959).

• HTM;

• LeNet;

• NeoCognitron;

• Hierarchical Statistical Learning; and

• HMAX and Extensions.

We have a discussion on the above mentioned models and explore

HMAX model (Riesenhuber and Poggio, 1999) and it’s extensions in Chap-

ter 3 in more detail:

• Serre et al.;
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• Mutch et al.;

• Masquelier et al.; and

• Theriault et al..

We compare these models and provide biological inspirations and jus-

tifications for the further extensions we have made to the HMAX model

including the use of clustering of features, encoding occurrences and co-

occurrences of features and the use of color information in our new CQ-

HMAX model in the following chapters.

2.1 Overview

Human visual cortex has a hierarchical structure as introduced in Sec-

tion 1.2. However, different roles are proposed for each layer, and there is

no perfect understanding of the processes taking place in each layer and

the exact connections among the layers are not known.

Several models are suggested for simulating the human visual cortex and

the image understanding capabilities of human. The rest of this chapter

briefly discusses several well-known models, followed by a more detailed

discussion of the HMAX model.

2.2 Related Models

In this section, we will describe three models: Dynamic Routing Model,

Top-Down Hierarchy of Features, and Interactive Activation and Competi-
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tion Models. We also introduce Deep Belief Networks (DBN) which have a

hierarchical statistical structure that resembles some of the characteristics

of the human visual cortex, and the Bag of Features (BoF) methods which

have been among the most implemented computational computer vision

methods.

2.2.1 Dynamic Routing Model

This model relies on a set of control neurons to dynamically modify the

synaptic strengths of intracortical connections so that information from

a windowed region of primary visual cortex (V 1) is selectively routed to

higher cortical areas (see Figure 2.1). Local spatial relationships (i.e. to-

pography) within the attentional window are preserved as information is

routed through the cortex. This enables attended objects to be represented

in higher cortical areas within an object-centered reference frame that is

position and scale invariant (Olshausen et al., 1993).

2.2.2 Top Down Hierarchy of Features

Bart et al. (2004) proposed a top-down feature extraction method in

which they start by N random large features and select the most informa-

tive ones as the top level nodes, and inside each selected patch, they select

the most informative sub-patches (see Figure 2.2). If the information is in-

creased using these nodes, they add these as children in the tree and repeat

these steps until no more information is added. The last selected nodes are

atomic features such as edges, corners, etc.
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Figure 2.1: Dynamic Routing Model (Olshausen et al., 1993).

Figure 2.2: Top-Down Hierarchy of Features (Bart et al., 2004) .
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This approach is different from the bottom-up segmentation methods

that use the continuity of grey-level, texture, and bounding contours. They

show that this method leads to improved segmentation results and can deal

with significant variations in shape and varying backgrounds. This model

is a successful example of hierarchical structure for segmentation (which

can be used in classification).

2.2.3 Interactive Activation and Competition Net-

work

The Interactive Activation and Competition Network (IAC) proposed

by McClelland and Rumelhart (2002) consists of a number of competitive

pools of units (see Figure 2.3). Each unit represents some micro-hypothesis

or feature. The units within each competitive pool are mutually exclusive

features and are interconnected with negative weights. Among the pools,

positive weights indicate features or micro-hypotheses that are consistent.

When the network is cycled, units connected by positive weights to active

units become more active, while units connected by negative weights to

active units are inhibited. The connections are in general bidirectional,

making the network interactive (i.e. the activation of one unit both influ-

ences and is influenced by the units to which it is connected).

Interactive Activation and Competition model is a model that uses in-

teraction between co-occurring units and enhances their connection weight

and decreases the weight of the non co-occurring units. Inspirations from

this model can be used for encoding co-occurrence of features in HMAX

17



Figure 2.3: Interactive Activation and Competition Model.

model.

2.2.4 Deep Belief Networks

Deep Belief Networks (DBNs) are probabilistic generative models that

are composed of multiple layers of stochastic, latent variables (see Figure

2.4). The latent variables typically have binary values and are often called

hidden units or feature detectors. The top two layers have undirected,

symmetric connections between them and form an associative memory. The

lower layers receive top-down, directed connections from the layer above.

The states of the units in the lowest layer represent a data vector. DBNs

have successfully been used to learn high-level structure in a wide variety

of domains, including handwritten digits (Hinton et al., 2006) and human

motion capture data (Taylor et al., 2007).

A DBN can be viewed as a composition of simple learning modules, each

of which is a type of Restricted Boltzmann Machine (RBM) that contains a
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Figure 2.4: Deep Belief Networks (Hinton et al., 2006).

layer of visible units that represent the data and a layer of hidden units that

learn to represent features of higher-order correlations in the data. The two

layers are connected by a matrix of symmetrically weighted connections W ,

and there are no connections within a layer. Given a vector of activities v

for the visible units, the hidden units are all conditionally independent so

it is easy to sample a vector h, from the factorial posterior distribution over

hidden vectors, P (h|v,W ). It is also easy to sample from P (v|h,W ). By

starting with an observed data vector on the visible units and alternating

several times between sampling from P (h|v,W ) and P (v|h,W ), it is easy

to learn a signal. This signal is simply the difference between the pairwise

correlations of the visible and hidden units at the beginning and end of

the sampling. DBNs typically use a logistic function of the weighted input

received from above or below to determine the probability that a binary

latent variable has a value of 1 during top-down generation or bottom-
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up inference, but other types of variables can be used and the variational

bound still applies, provided the variables are all in the exponential family.

DBNs have been used for generating and recognizing images, video se-

quences, and motion-capture data (Taylor et al., 2007). If the number of

units in the highest layer is small, DBNs perform non-linear dimensional-

ity reduction and they can learn short binary codes that allow very fast

retrieval of documents or images (Salakhutdinov and Hinton, 2009; Bengio

and LeCun, 2007; LeCun et al., 1998; Hinton et al., 2006).

2.2.5 Bag of Features

A simple approach to classifying images is to treat them as a collection

of regions, describing only their appearance and ignoring their spatial struc-

ture. Similar models have been successfully used in the text community

for analyzing documents and are known as ”bag-of-words” models (Har-

ris, 1954), since each document is represented by a distribution over fixed

vocabulary(s). Using such a representation, methods such as probabilistic

latent semantic analysis (pLSA) and Latent Dirichlet Allocation (LDA) are

able to extract coherent topics within document collections in an unsuper-

vised manner. Bag of features is a well known computational approach

that uses the histograms of features frequencies for image classification (Li

and Perona, 2005). The key idea is to find a series of features in the im-

ages and based on the frequency of features perform the classification task

(see Figure 2.5). Several approaches have been considered for the problem

of finding the best features. Regular grids, interest point detectors such
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as SIFT (Lowe, 1999), random sampling and segmentation based patches

have been used and compared. In order to perform the classification, these

histograms of frequencies are fed to a classifier such as Support Vector Ma-

chine (SVM). In other approaches, a fusion of these frequencies and other

features in the image are fed to the classifier.

Figure 2.5: Bag of Features (Li and Perona, 2005).

This concept can be used in HMAX model to encode frequency of fea-

tures and we use this method and introduce the HMean model in the fol-

lowing chapters.

2.3 Simple-Complex Cells Hierarchical Mod-

els

A series of biologically inspired models to image classification are pro-

posed based on the simple and complex cells structure introduced by Hubel

and Wiesel (1959). They found two types of cells in visual primary cor-
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tex called simple and complex cells, and also proposed a cascading model

of these two types of cells, as can be seen in Figure 1.2. In this section,

we briefly introduce these models and provide a deeper review on HMAX

model and its extensions in Chapter 3.

2.3.1 Hierarchical Temporal Memory

Hierarchical Temporal Memory (HTM) is a method proposed by George

and Hawkins (2009), inspired from the book “On Intelligence” (Hawkins

and Blakeslee, 2005). The HTM network is organized in a 3-level hierarchy.

In each level, there is a temporal and a spatial pooler.

Figure 2.6: Operation of nodes in a hierarchy: this illustrates how nodes operate

in a hierarchy. The bottom-level nodes have finished learning and are in inference

mode (George and Hawkins, 2009).

The HTM network operates in two distinct stages: training and infer-
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ence. As can be seen in Figure 2.6, during the training stage, the network

is exposed to movies of images, and the nodes in the network form rep-

resentations of the world using the learning algorithms. When learning

is complete, the network is switched to inference mode. The input to a

node, irrespective of its position in the hierarchy, is a temporal sequence of

patterns. A node contains two modules:

1. Spatial Pooling: Learns a mapping from a potentially infinite

number of input patterns to a finite number of quantization centers. The

output of the spatial pooling is in terms of its quantization centers. The

spatial pooling has two stages of operation: (a) During the learning stage,

it quantizes the input patterns and memorizes the quantization centers;

and (b) Once these quantization centers are learned, it produces outputs

in terms of these quantization centers. This is the inference stage.

2. Temporal Pooling: Learns temporal groups of quantization cen-

ters, according to the temporal proximity of occurrence of the quantization

centers of the spatial pooling. The output of the temporal pooling is in

terms of the temporal groups that it has learned. Markov chains are used

for the temporal grouping part and Bayesian Networks are employed to do

the updates in the feed-forward and feed-back phase. In a modification to

this mode, Bayesian networks were replaced by a competitive network and

the performance of the structure is reported to be improved on the mov-

ing bit-worm dataset (Ramanathan et al., 2009). Competitive networks

are replaced with a version of GSOMs (our previous unpublished work) to

perform clustering and this show better results in some experiments.
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2.3.2 LeNet

LeCun’s convolutional neural networks (LeCun and Bengio, 1995) are

organized in layers of two types: convolutional layers and sub-sampling

layers (Figure 2.7). Each layer has a topographic structure i.e. each neuron

is associated with a fixed two dimensional position that corresponds to a

location in the input image, along with a receptive field (the region of the

input image that influences the response of the neuron). At each location

of each layer, there are a number of different neurons, each with its set

of weights, associated with neurons in a rectangular patch in the previous

layer. The same set of weights, but with a different input rectangular patch,

is associated with neurons at different locations.

Figure 2.7: LeNet (LeCun and Bengio, 1995).

Even with random weights in the first layers, a convolutional neural

network performs well, i.e. better than a trained fully connected neural

network but worse than a fully optimized convolutional neural network.

2.3.3 Neocognitron

Neocognitron (Fukushima, 1980) is a hierarchical multi-layered neural

network. The Neocognitron is a natural extension of the cascading models
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(Figure 2.8). In Neocognitron, which consists of two types of cells called

S-cell and C-cell, the local features are extracted by S-cells, and these

features’ deformation, such as local shifts, are tolerated by C-cells. Local

features in the input are integrated gradually and classified in the higher

layers. In later extensions to this model (Fukushima, 1988), the idea of

’winner kills loser’ in simple layers and sum (instead of max) in complex

layers, has been shown to improve the model.

Figure 2.8: Neocognitron (Fukushima, 1980).

2.3.4 Hierarchical Statistical Learning

Fidler et al. (2008) proposed a hierarchical statistical learning approach

that is similar to HMAX architecture in lower layers . They use favorable

statistics of images to learn parts (Figure 2.9a).

They use Gabor filters in S1 layer, and based on the outputs of these

filters, they define sub-parts and parts. The position and orientation of each

sub-part is described with respect to the center of the mass and orientation

of pni where n is the layer number and i is the feature index. Some variance

is allowed in the exact position of sub-parts. The simplest parts (layer
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(a) Hierarchical statistical learning. (b) Learning parts.

Figure 2.9: Left: Hierarchical Statistical Learning. Right: Learning statistics in

images Fidler et al. (2008).

1) are On/Off Gabor filters. A part pni of layer n is built from a list of

m sub parts {pni−1}j=1..m. There are bottom-up and top-down learning

in this approach. In bottom-up learning of parts, statistics about {what,

orientation, where} are gathered in the neighborhood of each type of part

pn−1i of layer n − 1 and only the most frequent configurations of {what,

orientation, where} are selected to be a part pni of layer n. In the top-down

selection, each activated part pn−1i votes for every part pni that contains

pn−1i in its list of sub-parts, and each part pni that receives votes from all

its sub parts is selected (Figure 2.9b). A final subset of parts from step 1

is selected by minimal descriptor length algorithm.

2.3.5 HMAX Model

HMAX is a computational model of object recognition in cortex pro-

posed by Riesenhuber and Poggio (1999). The standard model simulates

the feed-forward path of the visual cortex and has been first used to classify
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animal vs. non-animal images and paper clip images. This model is used

to find a good trade-off between invariance and selectivity. S1 cells provide

selectivity by responding to oriented filters and C1 cells provide invariance

by pooling over neighboring scales and positions. There are several ex-

tensions to this model in the recent years. In Chapter 3, we describe this

model in detail and provide a review on the extensions and improvements

made to it.

2.4 Comparisons and Discussions

Several researchers have built pattern/object recognition systems with

multiple levels. Neocognitron, convolutional neural networks, HMAX and

HTM are examples of these models. Boltzmann machines and DBNs pro-

vide another set of examples of networks with multiple levels of represen-

tations having more computer vision background. Convolutional networks

were inspired by the visual system’s structure, and in particular by the

models proposed in (Hubel and Wiesel, 1959).

The first computational models based on the local connections between

neurons and on hierarchically organized transformations of the image are

found in Fukushima’s Neocognitron (Fukushima, 1980). When neurons

with the same parameters are applied on patches of the previous layer at

different locations, a form of translational invariance is obtained. Later,

LeCun followed-up on this idea and trained such networks using the er-

ror gradient, obtaining and maintaining state-of-the-art performances on

several computer vision applications (LeCun and Bengio, 1995).
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Figure 2.10: A comparison on the main models introduced above.

Modern understanding of the physiology of the visual system is con-

sistent with the processing style found in convolutional networks (Serre

et al., 2007a), at least for the quick recognition of objects, i.e. without

the benefit of attention and top-down feedback connections. Vision sys-

tems based on convolutional neural networks have been among the best

performing systems. This has been shown clearly for handwritten charac-

ter recognition (LeCun and Bengio, 1995), which has served as a machine

learning benchmark for many years. HMAX has some advantages such as

the fact that it fits neuroscience data well, and can make a few predictions

for biophysics and psychophysics. It can compete with existing Artificial

Intelligence (AI) systems on categorization task. On the other hand, it also

has some disadvantages. It ignores feedback effects and focuses on the first

150 ms of visual pathway; hence, it is not suitable for some complicated

object recognition tasks in which feedback plays an important role. The

scale information is lost due to the max operation in Ck layers. HMAX,

unlike HTM, does not need long spatio-temporal information processing

procedures and can be applied to real images rather than toy object videos

for learning. HTM model uses the formalism of Bayesian belief propaga-

tion for inference and has the capability of using feedback propagation for
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reconstruction of input images and uses temporal information as well. A

comparison on different models described above, is summarized in Figure

2.10.

Convolutional neural networks and feed-forward models of the visual

cortex like Neocognitron and the HMAX model have been very successful

on visual pattern recognition problems. Despite the wide variety of learn-

ing algorithms employed in these models, they all share the same structural

properties. All of these models have feed-forward hierarchies with alter-

nating layers of feature selection and feature pooling levels. However the

proposed models for the visual cortex are simplistic and do not provide a

perfect mapping of the brain.

In conclusion, there are two approaches using hierarchical structures.

One is the more biologically inspired models that attempt to model the

human visual cortex such as HMAX, and the other is the computer vision

and probabilistic approaches such as DBN. Since HMAX has a very strong

biological base and has been proven to be very successful in image classi-

fication, we will employ this concept as a basis for our model. In Chapter

3 we will provide an exposition of our model and investigate the proposed

extensions and improvements made to it.

29



Chapter 3

The HMAX Model and its

Extensions

In this chapter we introduce the HMAX biologically inspired model and

provide a review on the recent modifications and extensions made to this

model. We conclude this chapter by providing justifications and biological

inspirations for the modifications and enhancements we have proposed in

this thesis, followed by a review on works related to these modifications.

3.1 HMAX Model

The HMAX model (Riesenhuber and Poggio, 1999) simulates the feed-

forward path of the visual cortex. This model is used to find a good

trade-off between invariance and selectivity. S1 cells provide selectivity

by responding to oriented filters and C1 cells provide invariance by pooling

over neighboring scales and positions, as can be seen in Figure 3.1. There

were a number of extensions made to this model in recent years. We first
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introduce the basic model, and then discuss its extensions.

Figure 3.1: Invariance to scale and position in C1 layer (Serre and Riesenhuber,

2004).

Event-Related Potential (ERP) data has shown that the process of ob-

ject recognition appears to take remarkably little time on the order of the

latency of the ventral visual stream. This adds to earlier psychophysical

studies using a rapid serial visual presentation paradigm (RSVP) which

have found that subjects were still able to process images when they were

presented as rapidly as 8 images per second. In summary, the accumulated

evidence points to six mostly accepted properties of the ventral stream

architecture:

• A hierarchical build-up of invariance, first to position and scale and

then to viewpoint and more complex transformations requiring the

interpolation between several different object views;

• In parallel, an increasing size of the receptive fields;

• An increasing complexity of the optimal stimuli for the neurons;
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• A basic feed-forward processing of information (for immediate recog-

nition tasks);

• Plasticity and learning probably at all stages and certainly at the

level of IT; and

• Learning specific to an individual object is not required for scale and

position invariance (over a restricted range).

These basic facts lead to a standard model, likely to represent the sim-

plest class of models reflecting the known anatomical and biological con-

straints. It represents in its basic architecture the average belief - often

implicit - of many visual physiologists.

Figure 3.2: The standard HMAX model (Riesenhuber and Poggio, 1999) .

The model reflects the general organization of visual cortex in a series

of layers from V 1 to IT to PFC (as can be seen in Figure 3.2). From the
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viewpoint of invariance properties, it consists of a sequence of two main

modules based on two key ideas. The first module, shown schematically

above, leads to model units showing the same scale and position invariance

properties as the view-tuned IT neurons of (Logothetis et al., 2001) using

the same stimuli. This is not an independent prediction since the model

parameters were chosen to fit Logothetis’ data (Logothetis et al., 2001).

It is, however, not obvious that a hierarchical architecture using plausible

neural mechanisms could account for the measured invariance and selec-

tivity. Computationally, this is accomplished by a scheme that can be

best explained by taking striate complex cells as an example: invariance to

changes in the position of an optimal stimulus (within a range) is obtained

in the model by means of a maximum operation (max) performed on the

simple cell inputs to the complex cells, where the strongest input deter-

mines the cell’s output. Simple cells afferent to a complex cell are assumed

to have the same preferred orientation with their receptive fields located at

different positions.

Taking the maximum over the simple cell afferent inputs provides po-

sition invariance while preserving feature specificity. The key idea is that

the step of filtering followed by a max operation is equivalent to a powerful

signal processing technique: select the peak of the correlation between the

signal and a given matched filter, where the correlation is either over posi-

tion or scale. The model alternates layers of units combining simple filters

into more complex ones in order to increase pattern selectivity with layers

based on the max operation and also to build invariance to position and
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scale while preserving pattern selectivity (Serre and Riesenhuber, 2004).

In the second part of the architecture, (Figure 3.2), learning from mul-

tiple examples, i.e. different view-tuned neurons, leads to view-invariant

units as well as to neural circuits performing specific tasks. The key idea

here is that interpolation and generalization can be obtained by simple

networks, similar to Gaussian Radial Basis Function (GRBF) networks

(Riesenhuber and Poggio, 1999) that learn from a set of examples, that

is, input-output pairs. In this case, inputs are views and the outputs are

the parameters of interest such as the label of the object or its pose or

expression (in the case of a face). The GRBF network has a hidden unit

for each example view, broadly tuned to the features of an example image.

The weights from the hidden units to the output are learned from the

set of examples, that is input-output pairs. In principle, two networks

sharing the same hidden units but with different weights (from the hidden

units to the output unit), could be trained to perform different tasks such

as pose estimation or view-invariant recognition. Depending just on the set

of training examples, learning networks of this type can learn to categorize

across exemplars of a class as well as to identify an object across differ-

ent illuminations and different viewpoints (Riesenhuber and Poggio, 2000).

The demonstration that a view-based GRBF model could achieve view-

invariant object recognition in fact motivated psychophysical experiments

(Edelman, 1991). In turn, the psychophysics provided strong support for

the view-based hypothesis against alternative theories (for a review, see

(Tarr and ulthoff, 1998) and, together with the model, triggered the phys-
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iological work of (Logothetis et al., 1995)). Thus, the two key ideas in the

model are: (1) The max operation provides invariance at several steps of

the hierarchy; and (2) The RBF-like learning network learns a specific task

based on a set of cells tuned to example views. More details on how tuning

properties are adjusted, in particular invariance ranges in HMAX, depend

on pooling parameters.

In the standard HMAX model, there are four layers of hierarchy to

create the features for the classifier and there is a supervised classifier on

top. The overall framework is described as follows:

S1 Layer: Input images are densely sampled by arrays of two-dimensional

Gaussian filters, the so-called S1 units (second derivative of Gaussian, of

four different orientations and 17 different scales); sensitive to bars of differ-

ent orientations, thus roughly resembling properties of simple cells in striate

cortex. At each pixel of the input image, filters of each size and orientation

are centered. The filters are sum-normalized to zero and square-normalized

to 1, and the result of the convolution of an image patch with a filter is

divided by the power (sum of squares) of the image patch.

C1 Layer: In the next step, filter bands are defined, i.e. groups of S1

filters of a certain size range. Within each filter band, a pooling range is

defined which determines the size of the array of neighboring S1 units of

all sizes in that filter band that feed into a C1 unit (roughly corresponding

to complex cells of striate cortex). Only S1 filters with the same preferred

orientation feed into a given C1 unit to preserve feature specificity. The

pooling operation that the C1 units use is the max operation, i.e. a C1
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unit’s activity is determined by the strongest input it receives.

S2 Layer: Within each filter band, a square of four adjacent, non-

overlapping C1 units is then grouped to provide input to a S2 unit. There

are 256 different types of S2 units in each filter band, corresponding to

different possible arrangements of four C1 units of each of four types (i.e.

preferred bar orientation). The S2 unit response function is a Gaussian

function with mean 0 and standard deviation 1, i.e. a S2 unit has a maximal

firing rate of 1 which is attained if each of its four afferent fires at a rate of

1 as well. S2 units provide the feature dictionary of HMAX, in this case

all combinations of 2× 2 arrangements of bars (more precisely, C1 cells) at

four possible orientations.

C2 Layer: To finally achieve size invariance over all filter sizes in the

four filter bands and position invariance over the whole visual field, the S2

units are again pooled by a max operation to yield C2 units, the output

units of the HMAX core system, designed to correspond to neurons in

extrastriate visual area V 4 or posterior IT (PIT). There are 256 C2 units,

each of which pools over all S2 units of one type at all positions and scales.

Consequently, a C2 unit will fire at the same rate as the most active S2

unit that is selective for the same combination of four bars, but regardless

of its scale or position.

VTU Layer: C2 units then again provide input to the view-tuned units

(VTUs), named after their property of responding well to a certain two-

dimensional view of a three-dimensional object, thereby closely resembling

the view-tuned cells found in monkey inferotemporal cortex by Logothetis
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et al (Logothetis et al., 1995). The C2 to VTU connections are so far the

only stage of the HMAX model where learning occurs. A VTU is tuned to

a stimulus by selecting the activities of the C2 units in response to that

stimulus as the center of a 256-dimensional Gaussian response function,

yielding a maximal response of 1 for a VTU in case the C2 activation

pattern exactly matches the C2 activation pattern evoked by the train-

ing stimulus. To achieve greater robustness in case of cluttered stimulus

displays, only those C2 units may be selected as afferent for a VTU that

responds most strongly to the training stimulus. An additional parameter

specifying response properties of a VTU is its σ value, or the standard

deviation of its Gaussian response function. A smaller σ value yields more

specific tuning since the resultant Gaussian has a narrower half-maximum

width.

3.2 Extensions to the Standard HMAX Model

Several modifications and improvement have been proposed to improve

the standard HMAX model. In the rest of this section we introduce the

existing known modifications to HMAX model, as follows:

Serre et al.

Serre and Reisenhuber modified the standard HMAX structure, and

released a new version of this structure (Serre and Riesenhuber, 2004).

Gabor filters were used instead of second order Gaussian derivatives in S1

layer and the number of filter sizes was increased. They also changed the
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values of scale range and pool range parameters in standard HMAX in C1

layer to provide less scale tolerance and therefore narrower spatial frequency

bandwidth (Serre and Riesenhuber, 2004). Two other layers was added to

this standard model. This model includes S2b, S3, C2b, C3, and S4 as

shown in Figure 3.3 (where b indicates bypass layers). This hierarchical

structure is repeated once more to create S3 and C3 layers, and in another

implementation, S2b and C2b layers are also created to bypass S2 and C2

layers in creating the dictionary (Serre et al., 2007a).

Figure 3.3: Extensions to HMAX in Serre et al. (2007a)

In the basic HMAX model, in S1 layer, Gaussian filters are convolved

on the whole image to create inputs to the C1 layer. In the later models,

Gabor filters were used to replace Gaussian filters because Gabor filters

were shown to have better performance and to be more similar to V 1 cells

(Serre and Riesenhuber, 2004). Gabor filters have more free parameters
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and can be tuned more accurately than Gaussian filters. On one hand,

using Gabor filters provides better performance when the model is used to

differentiate between edges, bars and gratings. As illustrated in Figure 3.4

(Serre and Riesenhuber, 2004), using Gaussian filters, we obtain consistent

tuning curves for sweeping edges, bars and gratings since Gaussian filters

have shorter and wider bars. On the other hand, since Gaussian derivatives

have only one free parameter, it is impossible for them to provide matching

of spatial frequency distribution and bandwidth (Serre and Riesenhuber,

2004).

Figure 3.4: (left) Gabor and (right) Gaussian derivatives (Serre and Riesenhuber,

2004).

Different numbers of Gabor filters have been implemented on the images

in different implementations. In (Serre et al., 2007a), 17 sizes of filters are

used with 4 orientations and 2 phases which sums up to 136 types of units,

as shown in Figure 3.5.

Beyond C2 the units are increasingly complex and invariance. S3/C3

units are combination of V 4 like units with different selectivity levels. They

are like a dictionary of 1000 features, which according to (Fujita et al.,

1992), is equivalent to the number of columns in IT . S4 units are view-

tuned units similar to the standard HMAX but with the difference that
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Figure 3.5: Receptive filed organization of the S1 units (only units at one phase

are shown (left: Gabor, right: Guassian) (Serre and Riesenhuber, 2004).

they are not supervised. Their tuning and invariance properties agree with

IT data (Riesenhuber and Poggio, 2000; Logothetis et al., 1995). Using

this approach, performance of 35% with 15 training images and 42% with

30 training images has been achieved on Caltech101 test dataset (Li et al.,

2004).

Mutch et al.

Mutch et al. (Mutch and Lowe, 2008; Mutch et al., 2010a) proposed a

series of computational modifications to the structure proposed by Serre et

al.’s model (See Figure 3.6).

In this model, a fixed size of Gabor filters is implemented on different

scales of the images which provides the same invariance to scale for Gabor

filters (Mutch and Lowe, 2008, 2006). In this model, an image is fed into

the structure and 10 different scales of the image are created as input to

S1 layer. Gabor filters in 4 directions in their standard model, and 12
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Figure 3.6: Modified HMAX model in (Mutch and Lowe, 2008).
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directions in their extended model, are created based on Equation 3.1 and

convolved on the images:

G(x, y) = exp

(
−(X2 + γ2Y 2)

2σ2

)
cos

(
2π

λ
X

)
(3.1)

These outputs are sent to C1 layer, which performs a local max oper-

ation on both size and position of the filter responses. The response of a

patch of pixels X to a particular S1 filter G is given by:

R(x, y) =

∣∣∣∣∣
∑
XiGi√∑
X2
i

∣∣∣∣∣ (3.2)

The output of this layer will be between 500-2000 different patches of size

4× 4, 8× 8, 12× 12 and 16× 16 depending on the size of the input image.

A dictionary of features is randomly sampled from these patches. One

or two samples are randomly sampled from each training image, and a

feature’s dictionary of size 4096 of prototypes is created. This dictionary is

then made sparse by selecting the highest response from each orientation

and setting the rest to 0, as portrayed in Figure 3.7.

The response of a patch of C1 unitsX to a particular S2 feature/prototype

P , of size n× n, is given by a Gaussian radial basis function:

R(x, P ) = exp

(
−‖ X − P ‖

2

2σ2α

)
(3.3)

In order to train the Support Vector Machine (SVM), they find the

distance of each sample from each training image, with each entry on the

42



Figure 3.7: Dense and sparse features (Theriault et al., 2011).

dictionary, and find the max in C2 layer. These features are sent to the

SVM for training.

For testing images the same hierarchical procedure is repeated and the

performance of the system is calculated. They proposed a few modifications

to improve the performance of the system such as running a SVM normals

method (Mladenić et al., 2004) to select the features with higher weights.

SVM is run a few times, and each time features with lower weights are

dropped. Using this approach, performance of 51% on 15 training images

and 56% on 30 training images has been achieved on Caltech101 dataset

(Li et al., 2004). This model is performing similar to the standard model,

meanwhile using a fewer number of layers. A GPU based implementation

of hierarchical architectures is provided in (Mutch et al., 2010a) which runs

about 100 times faster in creating the layers of hierarchical structures such

as HMAX. We used this source code as the kernel of our project, modeled

our modifications and performed the experimental simulations.
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Masquelier et al.

Masquelier and Thorpe (2007) proposed unsupervised learning of fea-

tures in S2 level of HMAX structure (see Figure 3.8). The structure they

proposed starts with 4 directions of Gabor filters on 5 scales of images.

The orientation with the best response is selected in C1 layer, and after

performing spatial lateral inhibition, responses of C1 layer are summed and

S2 features are created. The max is selected in C2 layer and another sum

is performed to create higher level features to be fed to the classifier. They

start with 20 prototypes initialized with random weight matrices Wi. They

present one training image and compute activation of each prototype layer

and the strongest output of each prototype triggers learning which is based

on Hebbian unsupervised learning rule. This approach has been tested on

a few classes of Caltech101 dataset(Li et al., 2004) and the features created

contain object specific characteristics and look like the gist of the image.

Theriault et al.

Theriault et al. (2011) suggested a few modifications to the HMAX

model and proposed S-HMAX model by selecting their sparse features from

neighboring scales rather than one random scale chosen in (Mutch and

Lowe, 2008) as illustrated in Figure 3.9.

They reported classification accuracy of 59% on Caltech101 dataset

using multiple scale features and reported that the use of normalized dot

product (instead of Gaussian radial basis function) at S2 layer (Equation

5.3) increases performance by another 2%. However, in our experiments,
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Figure 3.8: Unsupervised learning of S2 prototypes (Masquelier and Thorpe,

2007).

Figure 3.9: Multiple-scale sparse features (Theriault et al., 2011).
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this replacement had resulted in 6% lower performance.

Use of Color in HMAX Model

Recently, more sophisticated modeling of single-opponent and double-

opponent cells in V 1 has shown that adding more biological realism to

color descriptors can significantly improve object and scene categorization

performance. Nonetheless, this improvement is attained with a relatively

low-level color machinery. Zhang, Barhomi and Serre (Zhang et al., 2012)

proposed a new biologically inspired color descriptor that encodes color

information in a low-level manner. In their model, they create 8 channels

of opponent colors: R+G−, R−G+, R+C−, R−C+, Y +B−, Y −B+, Wh,

Bl and used these channels to calculate the Gabor filters on different ori-

entations and used them to create Single-Opponent and Double-Opponent

channels. In order to evaluate the combination of the SODO-HMAX model

of (Zhang et al., 2012) with our proposed color model 6, which is a high-

level color model, we concatenated their SODO-HMAX features with our

CQ-HMAX features. In SODO-HMAX, Single-Opponent features encode

color regions and Double-Opponent features encode color edges.

3.3 Discussions and Proposed Modifications

We present several modifications to the HMAX model in the following

chapters and propose a new biologically inspired high-level color model.

We provide the motivations for our modifications in three main aspects

and conclude this chapter by providing possible applications for HMAX
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model.

3.3.1 Visual Dictionary of Features in HMAX Model

As described in Section 3.1, in order to create the dictionary of features

in HMAX main model (Riesenhuber and Poggio, 1999), a handmade dic-

tionary of features in S2 level is used. This set was later replaced with a

random selection of patches of different sizes selected from C1 layer (Serre

and Riesenhuber, 2004). In another extension, these features were made

sparse (Mutch and Lowe, 2008), and multiple-scale sparse (Theriault et al.,

2011). Inspired by the better classification accuracy achieved by replacing

the Bayesian network with a Growing Self Organizing Map (GSOM) for

clustering in the inference phase in HTM model, we proposed several clus-

tering methods and investigated the use of saliency regions for sampling

the features for creation of the dictionary of features in Chapter 4. In this

chapter, we also provided a method to use the most frequent clusters in

different regions of the images of each class as candidates features.

3.3.2 Encoding Occurrences and Co-Occurrences of

Features in HMAX Model

In Chapter 5 we introduce several methods for pooling at C2 layer and

propose the HMean model in which a mean operator replaces the max op-

erator proposed. We also investigate the classification accuracy achieved by

concatenating these pooling methods. We further provide another exten-

sion to the HMAX model by adding a higher level dictionary that is created
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using co-occurrences of the features in the lower level dictionary of features.

We propose several methods for encoding occurrences and co-occurrences

of features and provide the biological inspirations for these modifications.

3.3.3 Color Processing in HMAX Model

In Chapter 6, a new biologically inspired model (CQ-HMAX) is intro-

duced in which a structure similar to HMAX is implemented for encoding

color information of the images. We provide biological inspirations for our

model and show that the classification results achieved by this model are

among the best in the bottom-up approaches on several benchmark color

datasets and show that the concatenation of our model with that in (Zhang

et al., 2012) performs better than the state-of-the-art performances.

3.3.4 Applications of HMAX Model

We have used HMAX and CQ-HMAX models for classification of images

extracted from histopathological images in order to detect mitosis. Use of

HMean-HMAX and CQ-HMAX resulted in better classification accuracy

than other computational methods such as SIFT on benthic marine mam-

mals dataset. We also propose a new HMAX-like structure for encoding

images captured from SONAR and use it for underwater object recognition

where the quality of images is not high and the use of sonar information

along with images results in better accuracy.
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Chapter 4

Enhancements to the Visual

Dictionary in HMAX Model

4.1 Introduction

Since Riesenhuber and Poggio (1999) proposed the HMAX model, a se-

ries of models were proposed to provide modifications to it in order to make

it more suitable for real image classification tasks (Serre and Riesenhuber,

2004; Serre et al., 2007a; Masquelier and Thorpe, 2007; Fidler et al., 2008;

Mutch and Lowe, 2008; Theriault et al., 2011). A review on these models

and the differences among them were provided in Chapter 3.

In the original HMAX model (Riesenhuber and Poggio, 1999), a hand-

0The models and experiments in this chapter are partially presented in International

Conference on Neural Information processing (ICONIP2010) and published in Proc. of

Springer Neural Information Processing, Models and Applications (Jalali et al., 2010)

and partially published in the Proceedings of IEEE International Joint Conference on

Neural Networks 2012 (IJCNN2012) (Jalali et al., 2012).
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made dictionary of features is used in S2 layer. In (Serre et al., 2007a)

a dictionary of features of size 4075 is randomly sampled from training

images from C1 layer which computes a local max operation on different

scales and orientations of Gaussian filter responses. Mutch et al. (Mutch

and Lowe, 2008) performed random sampling on Gabor filters of different

orientations with the same size, on different scales of images and made fea-

tures sparse. In (Masquelier and Thorpe, 2007), a Hebbian learning rule

was provided to update and learn features.

The use of non-random sampling to create the dictionary of features for

the model, was a prospective investigation, that motivated us to compare

the performance of non-random sampling methods with random sampling.

In this chapter, we introduce several Self Organizing Maps (SOM) and

K-means clustering methods for the creation of the dictionary of features

as well as the use of saliency points in the creation of this dictionary. We

use the same model provided in Mutch and Lowe (2006, 2008) that was

described in Section 3.2 and use the Graphical Processing Unit (GPU)

based codes provided in Mutch et al. (2010b) as a part of the Cortical

Network Simulator (CNS) package that form the basis for our experiments

and comparison.

We investigate different Self Organizing Maps (SOM) and clustering

methods and propose clustering as a means of reducing the size of the

dictionary of features in HMAX Model in Section 4.2. We introduce our

implementation of the model, provide the experimental results of our mod-

ifications to the dictionary of features created by the model, and discuss
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the modifications followed by conclusions in Section 4.3.

4.2 Proposed Methods for Creation of the

Visual Dictionary

In order to investigate the role of features selected in the dictionary

of features in this structure, we performed a series of experiments on Cal-

tech101 dataset (Li et al., 2004), which includes 101 classes of objects plus

a background category. Each class contains between 31 to 800 color images

that have a size of about 300× 200 pixels. A total of 30 randomly chosen

images from each class are used for training and the rest of the images are

used in the test phase.

Samples are selected from C1 pyramid of each image in different posi-

tions and scales using a random generator function with a Gaussian dis-

tribution in (Mutch and Lowe, 2008) based on the number of images per

class and by taking a different number of samples from each image. We

performed different non-random sampling methods and compared their per-

formances using an extensive set of experiments.

Since learning in S1 and S2 layers is not purely genetic, and in an ex-

periment by Kohonen (1982), it is shown that cats that have been kept

in an environment with only horizontal lines, did not develop sensitivity

to vertical lines, and since top-down supervision is absent or very weak in

V 1 layer, there shall be a self organizing structure in this layer to learn

the statistics of the input data. SOM has been proposed in Barlow et al.
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(1975) to resemble this biological inspirations. On the other hand, self or-

ganizing maps with a small number of nodes behave similar to K-means

and larger self-organizing maps rearrange data points while preserving their

topological structure in a lower-dimension manifold. Hence the main differ-

ence between SOM and K-means clustering is in the neighborhood update

which is absent in K-means clustering.

A self organizing map produces a low-dimensional discretized represen-

tation of the input space of the training samples Kohonen (1982). In a

self organizing map, after the random initialization of the values in the

map, the closest value to each entry from the input space to each neuron is

found, and the neighborhood of that particular winning neuron is updated

according to their distance to the winning map feature.

A self organizing map for an n-dimensional input space and m output

neurons includes the following steps:

1. Randomly initialize the weight vector wi for neuron i, i = 1,...,m.

2. Sampling: choose an input vector x from the training set.

3. Determine winner neuron k:

‖ wk − x ‖= mini ‖ wi − x ‖ (Euclidean distance)

4. Update all weight vectors of all neurons i in the neighborhood of the

winning neuron i(x):

wj(n+ 1) = xj(n) + η(n)hj,i(x)(n)(x− wj(n)), j = 1,...,M

5. If convergence criterion met, STOP. Otherwise, go to Step 2.

hj,i(x) = exp(− d2j,i
2σ2 ) where dj,i is the Euclidean distance from neuron j

to the winning neuron i
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σ(n) = σ0 exp(− n
τ1

)

η(n) = η0 exp(− n
τ2

)

η0 = 0.1, η(n) = 0.1 exp(− n
T

), n = 0,1,2,...

where T is the total number of iterations.

We perform K-means clustering after sampling more samples from C1

pyramid of each image in different approaches. Different number of sam-

ples and different number of clusters are tested in a series of experiments.

Whenever an empty cluster is created in the batch update phase, we create

a new cluster consisting of the one point furthest from its centroid. Squared

Euclidean distance is chosen as the distance measure, so that each centroid

is the mean of the points in the corresponding cluster. We use the K-means

function in Statistical toolbox of Matlab R© for clustering. We compared our

results with those from Mutch and Lowe (2008) which have reported 54%

classification accuracy before the use of weighted SVM.

Let X be a set of features sampled from images at the C1 layer in a

k − dimensional feature space, i.e. X = [x1, x2, ..., xM ]T ∈ <M×K .

K-means clustering is used to solve

min
D

M∑
m=1

min
n=1...N

‖ xm − dn ‖2 (4.1)

where D = [d1, d2,..., dN ]T are the cluster centers to be determined and

||.|| denotes the l2− norm.

4.2.1 SOM and Clustering over Images from All Classes

In the first approach, we sampled between 5 to 20 random patches from

all of the images to achieve a more dense sampling and added these samples
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to the dictionary of features, resulting in a very big dictionary of features of

size 15000 to 60000. We then performed SOM and clustering over the whole

dictionary and created a dictionary of size 1000 to 9000. This method is

illustrated in Figure 4.1. The results of this experiment are shown in Table

4.1.

Figure 4.1: Sampling over all images and performing clustering over all samples

to create the dictionary of features.

The value of M in Equation 4.1 is all the possible patches on all images

of all classes. If we haveNP possible patches on each image and we haveNI

number of images in each class and NC classes, then M = NP×NI×NC.

4.2.2 SOM and Clustering over Images Individually

In another approach, we sampled all of the possible positions of C1

features for each image; this resulted in a number of samples between 500 to

2000 for each image (depending on the image size). In this approach, all of

the patches of different sizes are extracted non-randomly from C1 layer with
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a step size of 1 without overlapping. Clustering is then performed on each

image, and between 3 to 10 clusters per image are added to the dictionary

which results in a dictionary size of 9180 to 30600. The results of this

experiment are shown in Table 4.1. Furthermore we performed sampling on

more features from each image in another set of experiments, and performed

a second clustering on the whole dictionary to reduce the number of features

to 4075. We sampled 10 clusters per image, and generated a dictionary of

size 30600. We performed another clustering to reduce the size to 4075 and

the performance is almost the same with sampling less from each image, and

creating a dictionary of size 4075. The method for this model is illustrated

in Figure 4.2. The same experiments were carried out using SOM.

Figure 4.2: Sampling over one single image and performing clustering at image

level to create a dictionary of features.

The value of M in Equation 4.1 is all the possible patches on all images

of each class. If we have NP possible patches on each image, NI number

of images in each class, and NC classes, then M = NP for each image.
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The clustering is done individually for each image (NI×NC times). Then

the clusters of each image are added to a final dictionary.

4.2.3 SOM and Clustering over Images in Each Class

In the third approach, we performed sampling on images of each class

separately. Different numbers of samples were chosen for each image, both

randomly and non-randomly. In the case of non-random sampling, a regular

scanning over all possible sizes and positions was conducted using a step

size depending on the ratio of number of possible positions for sampling

over number of desired samples from each image. We sampled different

numbers of samples from each image and created 3 different categories.

Small number of samples standing for 100-300 samples in each image, 300-

600 samples per image for medium number of sampling, and 600-2000 for

large number of sampling. For all the methods, the ratio of the number of

clusters over each class to the number of samples per image, was kept to be

approximately 0.1 since this showed the best performance among different

ratios of 0.2, 0.3 and 0.5. The same experiments were carried out using

SOM. The method for these experiments is shown in Figure 4.3.

The value of M in Equation 4.1 is all the possible patches on all images

of each class. If we have NP possible patches on each image, NI number

of images in each class, and NC classes, then M = NP ×NI for each class.

Then the clusters of each class are added to a final dictionary.
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Figure 4.3: Clustering on samples from the center quarter of the images from

each category to create a dictionary of features.

4.2.4 Sampling over Center of Images

Since most of the images in Caltech101 are focused on the center, we

investigated another approach where we performed the sampling around

the center of images with the objective of capturing more meaningful infor-

mation related to objects of interest and less information about the image

background. We tried two different methods for patch selection. In the

first method, we created the dictionary of features from the center of im-

ages from all of the images of each class, and in the training and testing

phases, use the full size images for calculating the S2 layer. The method

for this approach is shown in Figure 4.4.

In the second method, we sampled from the center quarter of each image

and created a dictionary of features from these patches. The method for
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Figure 4.4: Creating the dictionary of features from the center of images rather

than the whole image to create a dictionary of features.

this approach is shown in Figure 4.5. This approach, however, did not

outperform random sampling but we could achieve better performances

than random sampling using a dictionary of features that is smaller in size.

The value of M in Equation 4.1 is equal to the number of all of the

possible patches on the center of all images of each class. Consider the

example in which we have NP possible patches on each image (NP in

this method is smaller since we are only sampling from the center of the

images), NI number of images in each class, and NC classes, in the first

approach, we have M = NP × NI for each class; hence, the clustering is

performed NP × NC times and the clusters of each class are added to a

final dictionary. In the second approach, we have M = NP for each image.

The clustering is done individually for each image for NI ×NC times.
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Figure 4.5: Clustering on samples from the center quarter of all of the images

to create a dictionary of features.

4.2.5 Sampling over Saliency Points

In an extension to these experiments, we also performed sampling on

saliency regions in the images to investigate the performance of sampling

on these points. Walther (2006) has proposed a combination of Saliency

map with HMAX model. In this model, which is based on the saliency

map proposed in (Itti et al., 1998), a bottom-up salient region selection

is provided, and the points with higher saliency response are selected as

prospective points for sampling in the HMAX model, as depicted in Figure

4.6.

A saliency map is calculated for each image using three different fea-

tures, namely, Red-Green and Blue-Yellow color conspicuity map, intensity

conspicuity map, and orientation conspicuity map. After their combina-

tion, a saliency map is created and those points with higher response are

selected with their neighborhood for sampling. They sample from each
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Figure 4.6: Combined model of bottom up attention and object recognition

(Walther, 2006).

training class separately; these samples are used for training the SVM. A

very similar approach to performing clustering within classes was discussed

in Section 4.2.3. We found the top 10 most salient points in each image

based on the methods described in (Walther, 2006), and selected a win-

dow size of 16 × 16 around them, and randomly sampled patches of size

4× 4, 8× 8, 12× 12 and 16× 16 on these windows. It was observed that

the performance of the system did not improve over that of the random

sampling.

4.2.6 Spatially Localized Dictionary of Features

We explore the use of frequency and spatial information in clustering

features. Each image is divided in 3 × 3 grids, and clustering is done on

the features located within each grid for each class respectively. By using

grids, spatial information is encoded such that features that are clustered
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Figure 4.7: Use of zones and frequency of features in clustering inter classes

using most frequent features in each zone for each class of images.

together are found in a region. Once these N clusters are created, the

next step is to reduce the quantity so that the computational complexity

of the classification task is reduced. In our previous model, a lower number

of clusters was selected and that had resulted in blurring and degraded

classification performance. In this method, a higher number of clusters

is selected and a term frequency approach (borrowed from statistical text

analysis) is adopted to pick out the features of higher frequency as repre-

sentatives for every specific region in each class respectively, as shown in

Figure 4.7. A small subset of created clusters is chosen for each region R

in every category, and the clusters with the most patches are selected and

added to the final dictionary of features, D.
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Figure 4.8: Different methods for creation of the dictionary of features.

In this experiment, we have eliminated the S2 inhibition in (Mutch and

Lowe, 2008) and calculated the max in C2 layer in a ±1 scale neighborhood

and ±10% position neighborhood for patches on the borders, a ±2 scale

neighborhood and±20% position neighborhood is considered. We have also

eliminated patches that have invalid values (i.e. those that are partially

sampled from the border areas as well as some parts of the patch that

do not have a value in the image). Figure 4.8 illustrates different feature

learning methods carried out.

Blurring Images

Inspired from the work in (Lowe, 1999) on Scale Invariant Feature

Transform (SIFT) based methods, we blurred the images before processing

in another experiment to investigate if this step helps with HMAX model.

However, the use of Guassian low-pass filter did not result in any significant

improvement in classification results.
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Eliminating the SVM Layer

In another experiment, we tried skipping the higher levels of the hierar-

chy to evaluate the performance of S2 dictionary in a K nearest neighbors

(K-NN) method. We created a dictionary of features as described above

(sampling over each class of images) and labeled each sample according to

its class of images. In the test phase, we sampled 10-90 random samples

from each image, and found the K-NN matches (K varies between 10 to

100) with the existing dictionary of features, and assigned the image to the

class based on a majority voting of the minimum distance with dictionary

prototypes. In the classification phase, K is a user-defined constant, and

an unlabeled vector (a query or test point) is classified by assigning the

label that is the most frequent among the K training samples nearest to

that query point. Different approaches were taken here such as sampling

randomly, non-randomly, sampling more features from each image, and

performing a clustering afterwards, but none of them resulted in a perfor-

mance better than 10 percent, which is very low in comparison with the

52% performance we had achieved with the support vector classifier.

4.3 Discussions

As can be seen in Table 4.1, the best performance is achieved when

clustering is done using frequency of clusters in their respective spatial dis-

tribution. Several other clustering methods did not result in any significant

improvement despite higher computational costs of the model.
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Method Performance (%)

Random sampling 52.35 % ±1.2

Clustering on all images 48.62 % ±2.1

SOM on all images 37.71 % ±3.3

Clustering on each image 52.69 % ±0.8

SOM on each image 42.13 % ±2.7

Clustering on each class 51.22 % ±1.1

SOM on each class 41.87 % ±2.3

Clustering on center of images 50.04 % ±3.7

Random sampling on center of images 42.04 % ±2.1

Sampling over saliency points 52.18 % ±0.9

Clustering using frequency and spatial info 60.12 % ±2.2

Table 4.1: Comparison between random and non-random sampling methods for

creation of the dictionary of features in Caltech101 dataset classification task

using 30 training images per category.
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During the previous experiments, we arrive at the conclusion that with

sampling only from the center of the images, a better performance is

achieved, in comparison with random sampling, when a smaller number

of features is sampled in order to create the dictionary of features.

The averaging and blurring effects of clustering can be the reason of

equal performance with random sampling when spatial and frequency in-

formation are ignored. The reason that the results achieved using SOM

are significantly lower than clustering may be because SOM performs an

update in the neighborhood of the winning neuron. Hence a method with

less blurring effect in creation of the dictionary of features seems to provide

a better classification accuracy. The clusters created from images are both

from background and objects, and clustering features of the center of the

images, where most features are from objects rather than background, re-

sulted in better performance in comparison with random sampling on the

same dictionary size. Mutch and Lowe (2008) had shown that using using a

local max in C2 layer increases the classification performance in Caltech101

dataset by 5% which confirms the significance of spatial information in this

specific dataset.

In another experiment, we used only images of one class, and created a

dictionary from those images, and used this dictionary to classify the whole

dataset, and we achieved similar classification performances. This exper-

iment was repeated over other randomly chosen classes from Caltech101

dataset such as airplanes, accordion and bonsai and the results were simi-
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lar. One reason for this may be the huge size of sampling region. When the

size of sampling space is huge, random sampling is shown to be among the

best sampling methods in statistics. However, as can be seen in 4.1, when

the clustering is limited to the windows in the images and the clusters with

the highest frequencies are selected as representatives, the blurring effect

is reduced and the performance is increased significantly.

In (Rutishauser et al., 2004), interest points achieved from saliency

maps are used for classifying images after creation of dictionary of fea-

tures, and an improvement has been reported in the performance. One

prospective extension to the experiments in this chapter is to use wavelet

transform to find points with higher information as interest points which

are also used in compressive sampling methods.
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Chapter 5

Encoding Occurrences and

Co-occurrences of Features in

HMAX Model

5.1 Introduction

There is evidence that “Max” spatial pooling is present at multiple

levels in the visual system. Importantly, however, these studies cannot be

(and have not been) interpreted as evidence for only Max pooling taking

place. Each of these studies also showed evidence for “Average” pooling

occurring, to various extents which can be interpreted as the occurrence or

0A subset of the models and experiments presented in this chapter are published

in Proceedings of IEEE International Joint Conference on Neural Networks 2012

(IJCNN2012) (Jalali et al., 2012) and another subset is accepted in the annual meeting of

the Cognitive Science Society (CogSci 2013) (Jalali et al., 2013c) and are in preparation

for submission to the Journal of Neural Networks.
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frequency of the features. There is strong evidence that the primate visual

system is also tuned to the co-occurrence statistics. This refers to either

the joint or conditional probabilities of two (or more) features occurring

together within images belonging to a certain object category or across

categories. The detailed discussion on these evidences and studies will be

presented in Section 5.2.

We develop and implement a series of experiments to investigate the

role of different pooling methods in HMAX model which are biologically

inspired and fit well to the visual cortex mechanisms. In this chapter, we

investigate the use of mean pooling (thereafter HMean) and use this pooling

method along with max pooling conventionally performed in HMAX model

to show that the information encoded using these two different pooling

models results in better classification performance on Caltech101, Scenes,

Soccer and Flowers datasets. We also investigate encoding co-occurrence

of features and show that adding a higher layer to the HMAX structure

where co-occurrence of features is encoded as a new dictionary of features

improves the classification accuracy in a subset of Caltech256 dataset where

a higher number of training images is available.

5.2 Background on Biological Inspirations

In this section, we introduce the biological inspirations on Mean pool-

ing and discuss the biological inspirations for co-occurrence and provide

justifications.
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5.2.1 Biological Inspirations for Mean Pooling

There is evidence for Max spatial pooling occurring at multiple levels

in the visual system in the primary visual cortex (also known as V 1) of

cats (Finn and Ferster, 2007; Lampl et al., 2004), as well as in the higher

visual areas of monkeys, such as areas V 4 (Gawne and Martin, 2002) and

IT (Sato, 1989). Despite that monkey parietal cortex is associated with

attention, rather than invariant object recognition, Max pooling has also

been found in this area (Oleksiak et al., 2011).

Generally speaking, these studies investigated the relationship between

the responses to single stimuli versus pairs of stimuli. They compared

the response to a pair of stimuli (each placed at a different position) to

the responses when each stimulus was shown separately (but at the same

positions as the paired-stimuli case) for each neuron being recorded from.

Overall, there was evidence that the response to the pair of stimuli is about

the same as the larger of the two responses to each stimulus. This is con-

sistent with the idea that Max pooling is performed over spatial location.

Importantly, however, these studies cannot (and have not) been interpreted

as evidence for only Max pooling is taking place. Each of these studies also

showed evidence for “Average” pooling occurring, to various extents.

Sato (1989), showed that the response to two bars was “usually sim-

ilar or less than the stronger response in the single stimulus condition”.

Max pooling only accounts for the cases in which the response to two bars

was similar to the stronger response. More quantitatively, the study used a

summation index (SmI) to calculate spatial summation. An SmI of 1.0 cor-
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responds to Sum pooling, 0.0 to Max pooling, and −0.5 to Average pooling.

Over the population of monkey IT neurons that they recorded from, the

mean SmI was either 0.01 or −0.18, depending on whether the two stimuli

were in different or the same halves of the visual field, respectively. This

means that overall, the pooling was either Max-like, or between Max and

Average. These results were from the experiment in which the monkeys

were simply fixating. Interestingly, when the monkeys were made to ac-

tually perform a visual discrimination task, the mean SmI values became

more negative. In other words, spatial pooling became more Average-like.

The study in Gawne and Martin (2002) of V 4 neurons in monkeys also

found that Max pooling is not the only type of pooling present. While Max

pooling was a good model for “a substantial fraction” of the neurons, “for

many neurons, Gawne and Martin (2002) could not determine any clear

relationship”. Like the study in (Sato, 1989), there was little evidence for

Sum pooling. However, while Max pooling generally predicted responses

better than Average pooling, the correlation between residual MSE for

the two types of pooling was high (r = 0.83). Also, Average pooling was

better for a number of neurons. In other words, overall there is evidence

that Average pooling may also occur.

The study in (Lampl et al., 2004) of V 1 neurons in cats did not examine

Average pooling per se, but their results mirror those of the previous two

studies, in that there was strong evidence that Max pooling is a better

model than Sum pooling. Using the same spatial summation index as

Sato (1989), the mean index value was again close to 0 (corresponding to
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Max pooling). However, the variation in index value was large (±0.55SD),

suggesting that Max pooling alone does not account for all neurons. A

follow-on study (Finn and Ferster, 2007), also of cat V 1 neurons, found

similar results, concluding that there is a continuum of pooling behaviors.

Two other studies have also found evidence for Average pooling. Reynolds

et al. (1999) studied V 4 neurons in monkeys, and found that neural re-

sponses to pairs of bar stimuli were generally a weighted average of the

responses to individual bars. However, similar to the other studies men-

tioned, this weighting factor varied from cell to cell, and does not preclude

Max-like behavior (i.e. weighting that is close to 1.0, strongly favoring one

response over the other). On the other hand, Zoccolan et al. (2005) explic-

itly compared monkey IT neural responses to predictions from Max and

Average pooling, and found that Average pooling was the better model.

Overall, there is evidence for both Max and Average pooling, while

Sum pooling is clearly not performed in biological visual systems. Due to

experimental noise and other reasons, Max and Average pooling are hard

to distinguish with absolute certainty. This is especially the case because

most studies use pairs of stimuli that already elicit significant responses in-

dividually, therefore the difference between the Max and Average is math-

ematically limited to only a fraction of the full range of possible responses.

Another possible reason for the difficulty in distinguishing Max and

Average pooling, could be that biological systems do in fact utilize a con-

tinuous range of pooling functions. As suggested by the study of Sato

(1989), the pooling functions could also be dependent on attentional state,
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as well as the task being performed.

On a final note, the difference between Average and Sum is in the

nature of the denominator. If it is a constant, for example, if the size of

the neighborhood (i.e. number of neurons) being pooled over is the same

across all features and locations, then Average and Sum are effectively the

same, except for a constant factor. Computationally speaking, a classifier

would produce the exact same result in both cases.

5.2.2 Biological Inspirations for Co-occurrence

Beyond just being tuned to the statistics of feature occurrences, there

is strong evidence that the primate visual system is also tuned to the co-

occurrence statistics. Since a “feature” is not a well-defined concept, how

can the co-occurrence of two features be distinguished from the occurrence

of a single feature that happens to be comprised of two elementary features?

To make this distinction unambiguous, experiments are designed such that

the elementary features are visually distinct, due to explicit segmentation,

due to spatial separation, or from the task context. We term such features,

which are the result of sensitivity to co-occurrence, as “co-occurrence fea-

tures”.

In some sense, mid-level features themselves can be considered as co-

occurrence features, with their elementary features being simple orientation-

sensitive filters (corresponding to orientation-sensitive neurons in primary

visual cortex). Since lines, curves and contours are ubiquitous in images,

the presence of a short line segment of a certain orientation strongly pre-
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dicts that the orientation of a neighboring line segment will be similar. This

is particularly so, if the relative position of that neighboring line segment

is such that the two line segments have the possibility of being collinear.

Our focus here is on high-level features whose elementary features are

more complex than simple oriented filters. These high-level features ap-

proach the level of semantic object parts or possibly even objects them-

selves. In the rest of this section, we will review the experimental evidence

that the primate visual system develops sensitivity to such high-level co-

occurrence features.

In the field known as visual statistical learning (VSL), it has clearly been

shown that adult humans develop sensitivity to co-occurrence statistics in

images (Fiser and Aslin, 2001; Aslin and Newport, 2012). In a ground-

breaking study by Fiser and Aslin (2002) it was shown that, amazingly,

9-month-old infants similarly develop sensitivity to visual co-occurrence

statistics.

There is also an abundance of evidence from monkeys that their visual

systems develop sensitivity to co-occurrence statistics. In an early work

by Miyashita (1988); Sakai and Miyashita (1991), they trained monkeys to

recognize pairs of stimuli, in paradigm known as paired-associate learning.

Neurons were found that were sensitive to such trained stimulus pairs, but

not other stimulus pairs. The pairings were arbitrary, making the likelihood

that such neurons had already possessed such sensitivity vanishingly small.

More recently, Hirabayashi and Miyashita (2005) found that populations

of IT neurons are sensitive to feature configuration within objects.
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Direct evidence for sensitivity to co-occurrence above and beyond sen-

sitivity to occurrence was found by Baker et al. (2002). Monkeys were

trained to discriminate objects that were each composed of two distinct

parts linked by a line, forming “baton” objects. Compared to untrained

objects, selectivity for trained objects was enhanced. This was for both

the individual parts, as well as the combined “baton” objects. Crucially,

selectivity for the two parts together (i.e. the whole object) was greater

than the combined (summed) selectivity for each individual part.

Under what conditions does sensitivity to co-occurrence develop? In

human adults, this is an implicit process that develops without awareness

of the co-occurrence statistics, using a “cover task” or even through mere

exposure (Turk-Browne et al., 2005, 2009; Aslin and Newport, 2012). This

is also true for human infants (Fiser and Aslin, 2002; Aslin and Newport,

2012). In monkeys, most work has been done using active task learning.

This is so that the neural selectivity for trained objects can be compared to

the control set of untrained objects. Since neural selectivity is enhanced for

features that are diagnostic for active task learning (Sigala and Logothetis,

2002), passive viewing may not be sufficient to produce selectivity that is

large enough to be statistically significant when measured from electrode

recordings.

How has sensitivity to co-occurrence been measured experimentally?

The methods have generally been constrained by the nature of the sub-

jects. Adult human subjects have generally been tested behaviorally, i.e.

through their explicit responses (usually simple yes/no tests). More re-
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cently, fMRI has been shown to be able to detect co-occurrence sensitivity

(Turk-Browne et al., 2009). In human infants, due to their inability to un-

derstand or respond explicitly to verbal instruction, experiments have been

constrained to using tests for novelty detection that are ubiquitous for in-

fants. In monkeys, due to the ability to conduct invasive experiments that

are not possible with humans, scientists have conducted electrophysiologi-

cal experiments (i.e. using electrodes to record the responses of individual

neurons). Such experiments allow for a detailed, “close-up” analysis of the

effects of co-occurrence at the level of individual neurons e.g. Baker et al.

(2002); Sakai and Miyashita (1991). However, there are limitations, such

as the presence of noise, limited recording time, and the ability to record

from only a few hundred neurons at most.

Beyond just “being sensitive” to co-occurrence statistics, what are the

characteristics of such sensitivity? It is specific to spatial configuration,

such as the relative position of the elementary features (Hirabayashi and

Miyashita, 2005). In addition, this sensitivity is reflected not in strength

of neural responses per se, but rather in the selectivity for co-occurring

features relative to non-co-occurring features (Baker et al., 2002).

One special case of sensitivity to co-occurrence of features is that of

faces. The elementary features are semantic face parts such as the eyes,

nose and mouth. It is very well-established that humans and monkeys are

sensitive to the combination and relative configuration of face parts. Specif-

ically, any change to the normal configuration of the face leads to reduced

neural responses and poorer recognition accuracy. One manifestation of
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this is the Face Inversion Effect (FIE), whereby inverted faces are much

more poorly recognized than upright faces (Yin, 1969). Faces with the

parts in scrambled configurations are also poorly recognized. Furthermore,

the sensitivity to co-occurrence seems to be unavoidable. In what is known

as the Composite Face Effect, people are sensitive to the bottom halves

of faces, even when they are explicitly instructed to ignore them during a

discrimination task (Young et al., 1987).

Generally, such sensitivity requires normal visual experience during in-

fancy in order to develop (Le Grand et al., 2004). It also develops quickly,

reaching adults levels (at least qualitatively) by age 4 (de Heering et al.,

2007); this is consistent with the notion that passive exposure is sufficient

for co-occurrence sensitivity to develop (see above). Evidence for sensitiv-

ity to co-occurrence for face parts has also been found at the level of single

neurons. Freiwald et al. (2009) found that in one of the brain regions that

respond selectivity to faces, neurons on average responded to combinations

of two to three face parts, rather than individual parts. Co-occurrences

have been studied in a series of experiments such as Edelman et al. (2002).

Use of co-occurrences of features for creating more complex features in

Fidler et al. (2008) shows an improvement in classification accuracy, and

bag of features approaches show improvements in classification results using

frequency of patches in the images in (Li and Perona, 2005). Co-occurrence

information can be used to find part-part and part-whole relations of fea-

tures of different receptive field sizes. If a feature is occurring too often in

a class (and not likewise in other classes), it is more likely to be a discrim-
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inant feature in that class and if two features are co-occurring in a class

often in a neighborhood, they may be part of a more complex feature and

can have a part-part relation and they may be more related to the object

rather than the background (unless the background is also repetitive e.g.

sky in airplane images). In addition, if there exist features of different sizes

and they are co-occurring in the same position on different scales they are

likely to have a part-whole relationship. We introduce our model to encode

these characteristics in a biologically inspired model in short term and long

term memory aspects.

In the rest of this chapter, we propose several pooling methods in Sec-

tion 5.3 and introduce several approaches for encoding co-occurrence of

features in Section 5.4. We show the experimental results and compare

these models in Section 5.5 and a discussion and conclusion is provided in

Section 5.6.

5.3 HMean

We use the HMAX model presented in Mutch and Lowe (2008) in the

first three layers (S1, C1 and S2) as explained in detail in Chapter 3. Here

we have a brief review on this model and show our modifications to it. In

this implementation, an image is fed into the structure and 10 different

scales of the image are created as inputs to S1 layer, as can be seen in

Figure 5.3.

Gabor filters in 12 orientations are created as S1 layer filters:
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G(x, y) = exp

(
−(X2 + γ2Y 2)

2σ2

)
cos

(
2π

λ
X

)
. (5.1)

where X = x cos θ−y sin θ and Y = x sin θ+y cos θ. The values of x and

y vary between -5 and 5, and θ varies between 0 and π. The parameters γ

(aspect ratio), σ (effective width), and λ (wavelength) are all taken from

Serre et al. (2005) and are set to 0.3, 4.5, and 5.6 respectively.

Figure 5.1: The use of Average pooling (HMean) and Max pooling (HMAX).

A fixed size of Gabor filters is implemented on different scales of the

images where the smaller edge of the biggest image is set to 140 pixels while
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maintaining the aspect ratio (the image pyramid of 10 scales created each

layer by a factor of 21/4 smaller than the last using bicubic interpolation).

The response of a patch of pixels X to a particular S1 filter G is given by:

R(x, y) =

∣∣∣∣∣
∑
XiGi√∑
X2
i

∣∣∣∣∣ (5.2)

These outputs are sent to the C1 layer, which performs a local 3D

max operation on both scale (±1) and position (3 × 3 neighborhood) of

the filter responses. The output of this layer is a pyramid consisted of

between 500-2000 different patches of size 4× 4, 8× 8, 12× 12 and 16× 16

in 8 scales depending on the size of the input image. In this level one or

two samples are randomly sampled from each training image (from random

scales and positions) and a dictionary of features of size 4096 is created.

This dictionary is then made sparse by selecting the highest response from

each orientation and setting the rest to 0.

The response of a patch of C1 unitsX to a particular S2 feature/prototype

P (a dictionary feature), of size n× n, is given by a Gaussian radial basis

function:

R(X,P ) = exp

(
−‖ X − P ‖

2

2σ2α

)
(5.3)

The values of R are stored as S2 layer. The distance of each sample from

each training image with each entry on the dictionary is calculated and a

local max is taken in C2 layer in ±1scale and ±10% spatial neighborhood

(despite a global max in Serre et al. (Serre et al., 2005)). These C2 features

are sent to the SVM for training. For testing images the same hierarchical
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procedure is repeated. In (Mutch and Lowe, 2008) sparse prototypes are

calculated and the max response from all directions for each window is

taken and SVM normals method (Mladenić et al., 2004) is used to select

the features with higher weights. In this approach, SVM is run a few times,

and each time features with lower weights are dropped. In this HMAX

implementation, once S2 features are calculated, the C2 layer is calculated

as:

C2(n) = max(V n
k ) for ∀k ∈M

for n = 1, ..., N (5.4)

As can be seen in Figure 5.2 in conventional HMAX approaches, the

max on the columns is taken as the value for C2 either in a local neigh-

borhood of each feature or globally. Since taking the max in a local neigh-

borhood (in ±1 scale and ±10%spatial neighborhood) is shown to improve

the performance by about 5% in Caltech101 dataset in (Mutch and Lowe,

2008), in our experiments we also use a local neighborhood for calculating

the responses. We also eliminate the local inhibition in S2 level proposed

in (Mutch and Lowe, 2008) as it increased the performance by another

0.5%. Once a feature belongs to the first or last scale in the pyramid, we

extend the neighborhood to two neighboring scales. The same method is

used for features which fall in the borders of each scale, and +20% or −20%

of their neighborhood is used for comparisons. In the rest of this section,

we investigate different pooling methods in order to create the C2 layer.

We calculate the C2 layer in 4 different combinations:
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S2 Layer

Figure 5.2: The use of frequency of features vs. the use of the best matching

unit (BMU) response. In HMAX implementations, the max on the columns is

taken as the response for creating C2 output vector. In contrast, histogram

approaches using SIFT methods, use the statistics of occurrences of features, i.e.

the normalized sum of the max values on the rows.

Hard Max:

V n
m =


1 if V n

m = maxNn=1 V
n
m

0 otherwise

(5.5)

Threshold:

V n
m =


1 if V n

m >= Threshold

0 otherwise

(5.6)

Soft Max:

V n
m =



1 if V n
m = maxNn=1 V

n
m

V n
m if Threshold < V n

m < 1

0 otherwise

(5.7)

and Actual Value in which all of the values are used without any change.
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Once the values of V n
m are updated in different modes, the C2 response

is calculated as follows:

C2(n) =
M∑
k=1

V n
k for n = 1, ..., N (5.8)

We name these C2 vectors Frequency C2 or FC2 for short. The C2

vector is normalized to a value between 0 and 1 in all modes. For simplic-

ity we name C2 vectors created by Average mode: FC2AV , Hard Max:

FC2HM , Soft Max: FC2SM and Threshold: FC2T . Since the FC2AV

is more biologically inspired and it also shows the best classification results

(presented in Section 5.5.1), we name it HMean. This model is shown in

Figure 5.3. The HMean is equivalent to the occurrence or frequency in

“bag of features” methods, as we calculate the sum of the values on the

rows in Figure 5.2 and normalize it. The terms “HMean”, “occurrence”

and “frequency” are used interchangeably in the rest of this thesis.

In summary, in HMAX model, the maximum response of the S2 layer

is chosen as the C2 layer to be fed to the classifier. However in HMean,

the average response (mean pooling) is taken as the response to be fed to

the classifier as the C2 layer.

In Section 5.5 we show the classification results acquired by these dif-

ferent methods on Caltech101 dataset and show different concatenation of

these features with conventional max features from HMAX and show that

the use of these features in concatenation with C2 features improves the

classification performance on several datasets such as Caltech101, Flowers,

Soccer and Scenes.
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5.4 Encoding Co-occurrence of Features

In order to calculate the co-occurrence of features, we use the C2 fea-

tures calculated using Equation 5.8 on actual values calculated, called

HMean. In the next step, we find the most occurring features (MOF)

in each class as follows:

for i = 1 to NMOF

MOF (i) = maxNn=1C2(n)

IMOF (i) =argmaxNn=1C2(n)

C2(argmax(C2(n))) = 0;

end

Using the loop shown above, we find the value and index of the most fre-

quent features in each class. The next step is to encode the co-occurrence of

these features as can be seen in Figure 5.4. For every class, we calculate the

co-occurrence of the most frequent features and store it as a S3 dictionary

feature. Hence a new dictionary of features is added to the model which is

composed of NMOF × NMOF entries for each class. In this dictionary of

features, the value of each dictionary feature is calculated as:

C3(i, j) = C2(i)C2(j) exp

(
−‖ Si − Sj ‖

2

2σ2α

)
(5.9)

where Sn represents the spatial position of the C2 feature and σ = 0.5

(among different values chosen for σ in the experiments). We also tried

eliminating the spatial distance part of the equation which resulted in lower

performances.

This dictionary encodes the value of co-occurrence of every pair of fea-
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Figure 5.3: Creation of C3 dictionary for encoding co-occurrence of features.

tures selected for each class. Hence we will have NN dictionaries where

NN stands for the number of categories in the classification task. These

dictionaries are concatenated to create the C2 dictionary of features. In

the training and test phases, the respective feature to each dictionary fea-

ture is found (the most similar feature in every image) and the similarity

of the values in dictionary of features are calculated for every image. This

results in a NMOF × NMOF× NN feature as the C3 feature and it is con-

catenated to C2 feature vector and sent to the classifier for classification.

The extended model for encoding the co-occurrence of features is shown in

Figure 5.4.

Another interpretation of the co-occurrence information in this struc-

ture is to provide a probabilistic base for it. In order to implement proba-

bilities in this approach we can encode frequency of features as prior proba-

bilities of having the feature in a specific class, and co-occurrences as joint

probabilities of two features. Using steps described before, we calculate
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Figure 5.4: The main model encoding co-occurrence of features.
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p(fi|ck) for every feature for every class which is the prior probability of

the feature in a class. We also calculate p(fi, fj|ck) which is the joint proba-

bility of two features co-occurring for every class ck. Once all prior and joint

probabilities described above, are calculated, we will find p(ck|fi, fj, ...) for

every class, and the class with higher probability is more likely to be the

class that image belongs to. Since the number of features is high, this

approach needs extensive computations. Hence we only considered the co-

occurrences of every two features in the statement above. This proposed

method is an approximation of the Bayesian probabilities when two fea-

tures are independent. However, if two features are independent, encoding

their co-occurrence does not add any information. Hence the variable of the

distances of two features provides a degree of dependence between them,

and in Section 5.5 it is shown that removing the spatial parameter which

encodes the distances between two features, results in poorer classification

results.

P (Y = y|X1 = x1, X2 = x2) =
P (Y = y,X1 = x1, X2 = x2)

P (Y,X1 = x1, X2 = x2)
=∑

X3,..,Xn
P (Y = y,X1 = x1, X2 = x2, X3, ..., Xn)∑

Y,X3,..,Xn
P (Y,X1 = x1, X2 = x2, X3, ..., Xn))

(5.10)

Here we describe two other models for encoding co-occurrence of fea-

tures using a long-term and a short-term memory for storing the co-occurrence

weights.
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A Neural Network Based Model with a Long-Term Memory

Once the dictionary of features is created using the techniques described

above, we code the occurrence and co-occurrence information of features in

different classes. This information is stored in a neural network structure

in a long-term memory for every class. In the training and test phase, we

create a long term memory encoding occurrence and co-occurrence infor-

mation of the features for every image and feed it to a neural network.

The occurrence and co-occurrence information of features of every class is

encoded separately. This model is illustrated in Figure 5.5.

Figure 5.5: The neural network model with long-term memory for encoding

co-occurrence of features.

We calculate the occurrence of each feature in the dictionary of features,

using Equation 5.3) v (vp =
∑

X R(X,P ). We find the best matching unit

to each feature in the dictionary, and store their similarity using Equation

5.3 as m.

ci =
∑
j

mj
iv
j
i +

∑
k

cicjl
k
i (5.11)

where j is the dimension of patch i (4× 4, 8× 8, 12× 12, 16× 16) and k is

the dimension of dictionary of features. The network is then trained using
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all of the information for every patch response in the previous layer using:

vi(n+ 1) = vi(n) + ∆vi (5.12)

∆vi = αvimi (5.13)

and

lki (n+ 1) = lki (n) + ∆lki (5.14)

∆lki = αki cick (5.15)

where lki is the lateral weight of two features ci and ck. The value for

variable α in Equation 5.13 can be chosen as a constant parameter and in

our case, we set it to 0.5 and in Equation 5.15 as a closeness measure of

the two features as shown in Equation 5.16. The value of vi is initialized

to 0 and updated using:

αki = exp

(
−‖ si − sk ‖

2

2σ2

)
(5.16)

where si is the spatial position of the feature in the image and σ = 1. α

is a normalizing factor which is
(
m
4

)2
where m = 4, 8, 12, 16 is the feature

size to boost the weight of bigger patches, as their similarity is normally

less.

This network will be trained for all training images for every single

class, and the information calculated here, will be saved for every class

separately and will be considered as a long-term memory storing co- occur-

rence information of images of every class separately. Once this information
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is calculated, we feed all of the training images to this network again, and

get a response for every node in the C layer.

We can use this model for classification in an image level instead of class

level. In this mode, the dimension of vector to be fed to classifier is 4000

for every image, since we do not store any class information anymore and

variables vi and lki which store the class information (long term memory)

are not required to be updated anymore and variable lki in Equation 5.11

can be substituted by α in Equation 5.16.

A Neural Network Based Model with a Short-Term Memory

In order to encode co-occurrence information in images for each class,

we proposed a neural network based model. In this approach, once the

occurrence of features for each class are created, we convolve all patches on

the dictionary of features, and for every patch in the image X, we find its

best matching unit in the dictionary of features (over all patches p, in the

dictionary), and add this distance to value v, standing for occurrence of that

specific feature in the dictionary of features(vp =
∑

X R(X,P ) calculated

using Equation 5.3).

Once this information is calculated for all patches in the image, we have

a distribution of occurrences of patches in that specific image. Based on

these values, we calculate the co-occurrence values W for every two features

as:

Wk,l =
∑
∀k,l

vnk ∗ vml ∗ e
−
(
‖snk−sml ‖

2

2σ2α

)
(5.17)
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Figure 5.6: The neural network model with short-term memory for encoding

co-occurrence of features.

where snk is the spatial location of feature fnk where k is the index of feature

f , and n is the respective receptive field size which f belongs to. In the

next step, we calculate this information for every training image to train

the classifier based on:

Sc(Ck
i ) =

∑
Rk

sim(fC
i

j , fTj ) ∗ sim(fC
i

l , fTl )∗

sim(vC
i

j , v
T
j ) ∗ sim(vC

i

l , v
T
l ) ∗ sim(wC

i

jl , w
T
jl) (5.18)

where sim(x, y) = e
−||x−y||2

2σ2 and fTj is feature j in image T (T stands

for both training and test images) and vTj is the frequency information of

feature fTj and wTjl is the co-occurrence value of features fTj and fTl . This

model is illustrated in Figure 5.6.
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Figure 5.7: Sample images of (a) Caltech101 (b) Outdoor Scenes (c) Soccer and

(d) Flowers datasets.

5.5 Experimental Results

In order to evaluate the proposed models in Section 5.3 and 5.4, we ran

several experiments on Caltech101, Caltech256, Soccer, Scenes and Flowers

datasets.

5.5.1 HMean

In this section, we show the performance of concatenation of HMean

with HMAX on Caltech101, Scenes, Soccer and Flowers datasets. Sample

images of these datasets are shown in Figure 5.7. The HMAX model used

in these experiments is from Mutch and Lowe (2008).
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Caltech101 Dataset

Caltech101 dataset contains 101 categories of objects plus one back-

ground category and is introduced in more detail in Chapter 4. We used

30 training images per category for training the model and used the rest

as test images. (between 1 to 800 per class). The results of classification

on Caltech101 dataset in different modes are shown in Table 5.1

As can be seen from Table 5.1, the best performance in different pooling

methods is achieved on Caltech101 dataset when the actual values are

summed and nomalized, which is equaivalent to a mean pooling operator.

We name this method, HMean. The best performance is achieved when

the Max pooling and Mean pooling are concatenated.

Soccer Dataset

The Soccer team data set contains images from 7 soccer teams taken

from the web, containing 40 images (approximately 300 × 300 pixels) per

class, divided into random 25 training and 15 testing images per class.

Although players of other teams were allowed to appear in the images, no

players being a member of the other classes in the dataset were allowed

(Van De Weijer and Schmid, 2006). As shown in Table 5.1, the combined

use of HMean and HMAX models provides significant improvements over

using HMAX model alone. Since the images from different classes share

similar shapes, using color results in better performance than shape; this

is investigated in more detail in Chapter 6.
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Flowers Dataset

The 17-category Flowers dataset (Nilsback and Zisserman, 2006) con-

sists of 17 categories of common flowers in the UK with 80 images (approx-

imately 600× 600 pixels) per class. The images have large scale, pose and

light variations and there are also classes with large variations of images

within the class and close similarity to other classes. The classification

results of our model on this dataset are shown in Table 5.1. We use 50

random images from each category for training and 30 for testing as in

(Nilsback and Zisserman, 2006).

8 Scenes Dataset

This dataset contains 8 outdoor scene categories: coast, mountain, for-

est, open country, street, inside city, tall buildings and highways. There

are 2600 color images of size 256 × 256 pixels (Oliva and Torralba, 2001).

We used 100 random images per category for training and the rest for test-

ing (an average of 236 per category). As shown in Table 5.1, the use of

HMAX and HMean significantly improves classification performance when

concatenated. Further investigation on use of color in classification results

of this dataset is provided in Chapter 6.

Scenes, Flowers and Soccer datasets share similar shapes in different

colors among categories that make use of color information more important

in them as will be discussed in Chapter 6.
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Method Caltech101 Scenes Soccer Flowers

HMAX 54.7% ±1.2 71.48% ±2.1 24.76% ±4.2 42.54% ±3.7

FC2AV 42.7% ±1.1 73.71% ±1.8 26.67% ±2.3 36.67% ±1.2

FC2HM + C2 57.2% ±0.9 71.27% ±1.4 49.19% ±1.2 48.24 % ±1.9

FC2T + C2 55.9% ±1.5 69.18% ±2.4 45.72% ±3.1 45.15% ±2.8

FC2SM + C2 56.3 % ±0.9 70.14% ±1.2 47.58% ±1.8 46.13% ±0.5

FC2AV + C2 58.9% ±0.6 81.24% ±0.9 52.17% ±1.2 51.12% ±1.1

FC2AV.C2 44.6% ±1.4 65.45% ±1.8 28.32% ±1.7 38.74% ±1.0

Table 5.1: Classification performance on four datasets by use of frequency of

features in different modes. ′+′ and ′.′ stand for concatenation and inner

product of two vectors respectively. FC2AV is for Actual Value FC2,

FC2HM+C2 is for concatenation of HMAX C2 features with hard max FC2,

FC2T+C2 is for threshold, FC2SM+C2 is for soft max and FC2AV+C2 is for

actual values of C2 vectors described in Section 5.3.

5.5.2 Co-occurrence

We evaluated our co-occurrence model proposed in Section 5.4 on the

Caltech101 dataset Li et al. (2004). The model was trained on 30 images

per category (standard for this dataset; see Mutch and Lowe (2008)), and

tested on all the other images. We also used the Caltech256 dataset, be-

cause it allows for more images per category for training than Caltech101.

In particular, we considered only the 14 (out of 256) categories which had

200 or more images. We trained the model on 150 images (so that there

would be at least 50 images for testing), and tested on the rest. We also
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examined classification accuracy as a function of number of training im-

ages for Caltech256. This was motivated by the concern that co-occurrence

features could require more data for reliable co-occurrence statistics to be

extracted, before the advantage of co-occurrence could be properly mani-

fested. Using the co-occurrence methods proposed in Section 5.4 for neu-

ral networks with short and long term memories, a very low accuracy is

achieved since all the information of occurrence is transformed into a lower

dimension and the accuracy achieved by these two methods is 20% and

10% respectively.

We also evaluated the performance of our model on a new dataset con-

sisting of images of underwater targets. The main challenge with under-

water images is the existence of particles that limit the visibility in unclear

waters and results in scattering, reflection and absorption of light, and the

differential absorption of light of different wavelengths by water itself. This

dataset consists of 1664 images (roughly 740 × 420 pixels in size) from 13

categories. Example images from this dataset are shown in Figure 5.8. We

used 30 images per category for training, and the rest for testing.

Results are shown in Table 5.2. For all images, only intensity (lumi-

nance) information was used. All results were derived using 8 random

train/test splits. For all three datasets, the combination of HMAX and co-

occurrence features gave better results (classification accuracy) than either

type of feature alone (Caltech101: 59.3% vs. 54.7% vs. 57.7%; Caltech256:

64.4% vs. 60.2% vs. 48.6%; Underwater Images: 98.7% vs. 92.9% vs.

92.2%). Since co-occurrence features were derived from the co-occurrence
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Figure 5.8: Examples from TMSI Underwater Images dataset.
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of HMean features, we also compared which of these two feature types (co-

occurrence vs. HMean) gave better results when combined with HMAX.

Again, for all three datasets, combining co-occurrence features with HMAX

produced better results than combining HMean with HMAX (Caltech101:

59.3% vs. 58.9%; Caltech256: 64.4% vs. 61.3%; Underwater Images: 98.7%

vs. 98.3%). Furthermore, for all datasets, the combination of all three fea-

ture types was better than just HMAX and HMean together (Caltech101:

60.1% vs. 58.9%; Caltech256: 64.1% vs. 61.3%; Underwater Images: 99.0%

vs. 98.3%).

We also examined the effect of disregarding spatial distance (i.e. the

exponential in Eq. 5.9). As seen in Table 5.2, for all datasets, results were

better when spatial distance was taken into account (Caltech101: 57.7%

vs. 55.1%; Caltech256: 48.6% vs. 44.2%; Underwater Images: 92.2% vs.

83.3%).

In order to evaluate the effect of number of training images for the cre-

ation of co-occurrence features, we trained the model with varying numbers

of training images per category. As shown in Figure 5.9, the performance

boost was observed when adding co-occurrence features was greatest with

the use of 150 training images. However, for fewer than 150 training im-

ages, the boost from adding co-occurrence features is unreliable. Nonethe-

less, looking at just HMAX alone, performance seems to asymptote at 150

training images, but for the combination of HMAX and co-occurrence fea-

tures, performance seems to increase roughly linearly with the number of

training images. While empirically, co-occurrence may help performance in

97



Method Caltech101 Caltech256

(subset)

Underwater

Images

HMAX 54.7% ±1.4 60.2% ±1.7 92.9% ±2.1

Co-occurrence (no distance) 55.1% ±2.2 44.2% ±3.1 83.3% ±0.8

Co-occurrence 57.7% ±1.1 48.6% ±1.8 92.2% ±1.4

HMAX + Co-occurrence 59.3% ±1.3 64.1% ±1.2 98.7% ±1.1

HMAX + HMean 58.9% ±1.6 61.3% ±1.1 98.3% ±1.0

HMAX + HMean +

Co-occurrence

60.1% ±0.6 64.4% ±0.8 99.0% ±0.2

Table 5.2: Classification performance on the Caltech101, Caltech256 (subset –

see text for details), and TMSI Underwater Images datasets.

all datasets, similar analyses (i.e. performance boost as a function of num-

ber of training images) for the other 2 datasets may not be meaningful,

since the maximum number of training images is only 30 per category.

5.6 Discussions

In this chapter, we introduced several approaches for pooling and encod-

ing occurrence and co-occurrence of features in a biologically inspired hier-

archical structure. As shown in Section 5.5, the use of HMAX and HMean

encodes more information when concatenated together (Jalali et al., 2012).

The main difference between HMAX and HMean is in the pooling in the

C2 layer. In the combined model (HMAX+HMean), the Average pooling
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Figure 5.9: Classification accuracy on Caltech256 as a function of number of

training images.
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is performed along with max pooling and the classification results show a

significant improvement. This is also biologically inspired as expounded

in Section 5.1 as there is evidence for both pooling methods in the visual

cortex. The use of co-occurrence of features also provides an increased per-

formance however, the increase in Caltech101 is not significant due to the

low number of training images and the high number of categories. Since

the number of categories is high in Caltech101 dataset, selection of discrim-

inative features becomes more important as there may be many redundant

features that are occurring in many categories. In Caltech256 subset cho-

sen where more images are available for training the model, we observed

an improvement in classification results. These experiments open a path

to further investigation of different methods for encoding co-occurrence of

features. A top-down cross layered approach is shown to improve the per-

formance in (Fidler et al., 2008). However in our experiments we did not use

any top-down connections to provide heuristic information about features

that are used for encoding the co-occurrence and encoding co-occurrence

is solely performed in an unsupervised approach.

In this chapter, we showed that combining co-occurrence features with

regular HMAX features leads to better classification performance than us-

ing either feature type alone. Furthermore, adding co-occurrence features

to HMAX increases performance more than adding occurrence features.

The three types of features encode different information, and therefore the

combination of all three feature types gave the best overall performance.

For co-occurrence, the spatial distance between the two co-occurring fea-
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tures also contributes to better performance. In this chapter, we focused

solely on HMAX. However, in future work, our co-occurrence method can

be applied to other vision algorithms.

We also experimented with creating co-occurrence features from HMAX

features (rather than HMean features). However, this resulted in either a

drop in performance or no change.

Figure 5.9 suggests that the performance boost from using co-occurrence

may be limited by the number of training images. More detailed investi-

gation is limited by the relatively small number of images per category

in these datasets. Further investigation may require utilizing or creating

larger datasets.

Another prospect for further improvement is to encode co-occurrence

of more than two features. However, besides possibly requiring even more

training data than two-feature co-occurrence, there may be diminishing

returns for such “higher-order” co-occurrences. This is because relatively

fewer classes will have the underlying visual structure that will benefit from

encoding such co-occurrences.

In this chapter, the choice of features for encoding co-occurrence was

based on their frequency. Choosing discriminative (rather than frequent)

features for co-occurrence encoding may be a more direct approach to max-

imizing classification performance. To choose discriminative features, one

approach is to train the SVM several times and remove features with low

weights, as in Mutch and Lowe (2008), or to simply use features with mean

response values that differ the most between different classes.
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Chapter 6

CQ-HMAX: A New

Biologically Inspired Color

Approach to Image

Classification

We develop and implement a new approach to utilizing color informa-

tion for object and scene recognition that is inspired by the characteris-

tics of color- and object-selective neurons in the high-level inferotemporal

(IT) cortex of the primate visual system. In our hierarchical model, we

introduce a new dictionary of features representing visual information as

quantized color blobs that preserve coarse, relative spatial information. We

0Part of the models and experiments presented in this chapter are accepted in the

annual meeting of the Cognitive Science Society (CogSci 2013) (Jalali et al., 2013d) and

are in preparation for submission to the Journal of Pattern Recognition.
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run this model on several datasets such as Caltech101, Soccer, Flowers and

Outdoor Scenes. The combination of our color features with (grayscale)

shape features leads to double-digit average increases in performance over

shape features alone. Using our model, performance is significantly higher

than using color naively, i.e. concatenating the channels of various color

spaces. This indicates that usage of color information per se is not enough

to produce good performance, and that it is specifically our biologically-

inspired approach to color that results in significant improvement. Among

approaches that use bottom-up information only, the combination of three

sets of biologically-inspired features (our high-level color features with exist-

ing low-level color features and grayscale shape features) achieves the best

performance to date on the Soccer and Flowers datasets. In this chapter,

we implemented our approach by extending one specific model (HMAX),

but this approach to encoding color information can also be incorporated

into other models.

6.1 Introduction

Many models are inspired by the hierarchical organization of the visual

cortex proposed by Hubel and Wiesel (1959), such as Fukushima (1980),

Riesenhuber and Poggio (1999), Hinton et al. (2006) and Hawkins and

George (2006). Most of these models focus on image grayscale information

and ignore color information. On the other hand, the primate visual system

devotes impressive resources to color information processing (Zhang et al.,

2012). While the broad use of color information in the primate visual sys-
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tem is well-known, the details are still under active investigation (Conway

et al., 2010). This is true not only for color, but also for shape and form

(Op de Beeck and Baker, 2010; Lyon and Connolly, 2012). Nonetheless, in

this chapter, we attempt to utilize what is currently known about the use of

color to enhance object and scene recognition by computer algorithms. In

this chapter we utilize the HMAX model (Mutch and Lowe, 2008) but this

approach can be extended to be used with other computational models.

In our experiments we use the HMAX model (Riesenhuber and Poggio,

1999) in concatenation with our color model in order to evaluate the use

of both shape and color. HMAX is a biologically inspired model which

focuses on the shape processing capabilities of the ventral visual pathway,

and has been used to perform classification tasks (Mutch and Lowe, 2008;

Serre et al., 2007b).

We focus on modelling the high-level usage of color by incorporating

insights from cognitive psychology and neuroscience. The broad intuitive

inspiration for our model follows from the fact that colors are recognized

categorically just as object classes are, even though color discrimination and

matching is continuous (Palmer, 1999). Interestingly, people of different

races (Boynton and Olson, 1987; Uchikawa and Boynton, 1987), as well as

chimpanzees (Matuzawa, 1985), organize colors into the same basic color

categories, such as red, blue, yellow, green.

More importantly for object and scene recognition, the categorical recog-

nition of color suggests that, if color information is incorporated into object

and scene classification, then fine-grained color information (e.g. precisely
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specified hue) may not be necessary. For example, a beach scene might

be recognized from the blue (sky and sea) and brown (sand) regions. It

may not be important exactly how blue the sky/sea or how brown the sand

grains are. In fact, it may be important to disregard such details in order

to perform classification that is tolerant to variations in lighting, and so

on.

In addition, the coarse relative spatial position of such color regions

may be important. A blue region above a brown region might suggest

a beach scene. If the relative positions are reversed, then the image is

probably not a beach scene (or might be an upside-down one). Not only is

the detailed spatial information unnecessary, it may be crucial to discard it

and only retain coarse spatial information, since the exact spatial relations

will depend on factors such as the shape of the beach and the camera angle.

Overall, our model can be loosely described as performing object and

scene classification by reducing a given image to a “coarse arrangement of

categorical color blobs”, similar to the idea of spatial aggregation of visual

keywords (Lim, 1999), but with realization on the HMAX model. This

is different from approaches that utilize color information in a low-level

fashion e.g. Zhang et al. (2012), although the two types of approaches are

not mutually exclusive and can even be complementary (see Section 6.4).

Crucially, our biologically-inspired approach clearly outperforms the naive

use of color, where an image is decomposed into separate color channels

that are processed independently until the final classification stage.

First, we go beyond the intuitive motivation for our approach and re-
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view the specific biological evidence that the primate visual system uti-

lizes color information in a manner that is broadly consistent with our

model. Specifically, we review studies of color processing in the high-level

visual area of the primate brain known as the infero-temporal cortex (IT

for short), which is commonly associated with invariant object recognition

(Logothetis and Sheinberg, 1996).

In the broadest terms, the IT is known to play an important role in

color discrimination (see Komatsu (1998) for a review). A majority of the

IT neurons are color-selective (Desimone et al., 1985) and two indepen-

dent studies estimated this proportion to be roughly 70% (Komatsu et al.,

1992; Edwards et al., 2003). Contrary to the theory that color processing

occurs after more rapid luminance-only processing, no evidence was found

that colored images evoke responses that are delayed relative to achromatic

images (Edwards et al., 2003).

There is also more direct causal evidence for the role of the IT in color

processing. Color discrimination is severely disrupted by IT lesions (Dean,

1979; Heywood et al., 1988) or cooling (Horel, 1994). Using position emis-

sion tomography (PET) imaging, color discrimination activates the IT more

than brightness or position discrimination (Takechi et al., 1997).

Color-selective neurons in the IT are found in clusters, suggesting that

they may form a roughly segregated and independent processing network

(Conway and Tsao, 2006; Conway et al., 2007). As further evidence of

this, a color cluster in one part of the IT (the anterior IT) received projec-

tions from a color cluster from another part of the IT (the posterior IT),
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suggesting that these clusters of color-processing neurons form reciprocally-

connected modules within a distributed network in the IT (Banno et al.,

2011).

The IT neurons are selective for both hue and saturation (Komatsu,

1993). Different cells have different preferred hues, and as a population,

the cells’ preferred color spans most of the color spaces (Komatsu et al.,

1992; Conway et al., 2007). The colors for which the IT neurons are selec-

tive for tend to correspond to the basic color names (Komatsu, 1997, 1998).

Komatsu (1998) proposed that the IT has templates corresponding to color

categories and may be involved in determining color category by finding the

best match over these categories. More recently, the distribution of color-

selective neurons found in the IT seems to correspond to the three to four

most basic colors (Stoughton and Conway, 2008). The largest peaks align

with red, green, and blue, in order of size of peak, with a smaller peak

corresponding to yellow. These peaks roughly correspond to colors per-

ceived by humans. Prior to this, neural representation of such unique hues

(Hurvich, 1981) had not been found (Valberg, 2001; Mollon and Jordan,

1997). Note that in the low-level primary visual cortex, the axes defined

by cone opponency should more accurately be denoted bluish-red/cyan and

lavender/lime opponency (Conway and Livingstone, 2006; Stoughton and

Conway, 2008; Derrington et al., 1984), rather than the commonly-termed

red-green and blue-yellow opponency.

Finally, the region of the IT where color-selective neurons are found is

coarsely retinotopic (Yasuda et al., 2010), meaning that spatial information
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is maintained in a coarse manner, rather than completely discarded or

maintained with high fidelity.

Overall, these studies are broadly consistent with our proposed “coarse

arrangement of categorical color blobs” model of high-level color processing

in the primate visual system.

In contrast most computer vision algorithms utilize color information in

a relatively low-level manner. The simplest color extension of a non-color

algorithm would be to apply it independently to the R, G and B channels,

and then concatenate the features from all 3 channels just before the final

classifier stage. Most algorithms are variants of this basic idea, either using

some other color space, or fusing the channels before the classifier stage

(usually at the dictionary or keyword learning stage). For example, SIFT

features can be computed separately for each channel in HSV color space

(Bosch et al., 2008), while Brown and Susstrunk (2011) do this for RGB

space, along with an NIR (near infra-red) channel. Besides SIFT features,

other algorithms use (non-orientation based) histograms in the HSV (Tang

et al., 2012), Gaussian opponent color (Burghouts and Geusebroek, 2009;

Geusebroek et al., 2001), normalized RGB or opponent color spaces (Gevers

and Stokman, 2004). A comparison of such variants was done by Van de

Sande et al. (2010).

What these algorithms have in common is that in terms of the biology

of color vision, they correspond to at most the level of color-opponent cells

in the primary visual cortex (also known as V1), the lowest level in the

hierarchically-organized visual cortex.
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Recently, more sophisticated modeling of single-opponent and double-

opponent cells in V1 has shown that adding more biological realism to color

descriptors can significantly improve object and scene categorization per-

formance (Zhang et al., 2012). Nonetheless, this improvement is attained

with a relatively low-level color machinery.

One notable exception is the approach of learning semantic color names

that are used by humans (Van de Weijer and Schmid, 2007; Van de Weijer

et al., 2009; Shahbaz Khan et al., 2012). Our approach is different, but not

mutually exclusive, and these two approaches are discussed in Section 6.4.

The rest of this chapter is organized as follows: In Section 6.2, we

describe our model in more detail. In Section 6.3, experimental results

of our model on several datasets are provided followed by the results of

concatenating features of our model with other similar models. In Section

6.4, we provide a discussion of the model.

6.2 CQ-HMAX

In this section, we describe our new biologically inspired model, CQ-

HMAX (Color Quantization Hierarchical Max) which uses color informa-

tion in a hierarchical organization of simple and complex cells. The com-

bination of our Max-Mean model (Jalali et al., 2012) with CQ-HMAX is

investigated and the final model that encodes both color and shape infor-

mation is then presented. HMAX is a hierarchical model that uses Gabor

filters to find simple and complex shapes in the images. Our model has

a similar hierarchical structure. However, we use color quantization cores
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and not Gabor filters, hence our model encodes color information. When

combined with HMAX and HMean, the overall model includes both color

and shape information.

Our color model has a hierarchical structure of simple and complex cells

as can be seen in Figure 7.2. We first introduce the model briefly followed

by a more detailed description of each layer. An image pyramid is created

in YIQ color space. The pyramid has 10 scales, with each neighboring scale

different by a ratio of 1/(21/4). In order to evaluate the use of color infor-

mation in our model, we determined that the YIQ color space produced

the best results in comparison with HSV and RGB color spaces. (The Y

channel represents luminance information and I and Q represent chromi-

nance information). A set of representative values from each color channel

is selected as color cores and used to find the best matching unit to each

individual pixel value in the pyramid. The S1 layer is created on 10 scales

indicating the index of the best matching YIQ core to each pixel in the

image pyramids. At the C1 layer, a local max pooling is computed over

±10% spatial neighborhoods of approximately 6× 6 on ±1 neighbor scales

to find the most frequent color core in each neighborhood. A dictionary of

features is sampled randomly from the C1 layer of images. The distance of

each dictionary feature to all patches in a neighborhood of that dictionary

feature is calculated to create the S2 layer and the best response to each

dictionary feature in each image is chosen as the C2 layer to be fed to the

SVM layer for classification. We describe each layer in more detail below.
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Figure 6.1: The hierarchical structure of CQ-HMAX and an example image of

a beach scene in the S1 and C1 layers.

S1 Layer and Quantization Cores

The input images are first converted into YIQ color space and a pyramid

of 10 scales with a ratio of 21/4 is created, with the first scale having the

shorter side set to 140 pixels, maintaining the aspect ratio of the original

image. This image pyramid is then used as the input to the S1 layer. A

series of YIQ quantized “color cores” over YIQ channels are created to

be used as filters for this layer. We experimented with different numbers

of quantization values per color channel, and chose 5 per channel as the

optimal number (which results in 5 × 5 × 5 = 125 cores). In order to
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choose the optimal cores, 500 images were randomly selected and the color

range of these images in YIQ color space was calculated after normalization

to the range [0, 1]. The values of YIQ channel are mostly in the range

[0, 1], [0.4, 0.7] and [0.4, 0.6] respectively. These ranges were selected and

divided into 5 bins. The quantized values of Y, I and Q after normalization

to [0, 1] were therefore chosen as follows: Y = (0, 0.25, 0.5, 0.75, 1), I =

(0.4, 0.47, 0.55, 0.63, 0.7), Q = (0.4, 0.47, 0.5, 0.53, 0.6). Using these values

results in better classification performance than using the full range [0, 1]

in each YIQ channel. The outputs at the S1 layer are the index values (i.e.

1,2,...,125) of the best-matching color core for each element in the image

pyramid.

C1 Layer

The C1 layer provides local invariance to position and scale as it pools

nearby S1 units, and as a result, subsamples S1 to reduce the number of

units. The S1 pyramid is convolved with a 3D max filter to set the C1

layer size of the bottom of the pyramid to 25× 25 and the highest layer of

the pyramid to 5×5 accordingly. The max is calculated over ±10% spatial

neighborhood on ±1 neighbor scales in the middle of the pyramid and −2

on the highest level and +2 on the lowest layer of the pyramid (hence it is

called a 3D max, as it takes the max over 2D spatial distribution and over

±1 scale). This layer provides a model for V 1 complex cells. Figure 7.2

also shows an example image of S1 and C1 layers. S1 and C1 layers have

a distribution of quantization cores from coarse to fine. The higher layers
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of the S1 pyramid are taken from smaller scales of the images in the input

pyramid and respectively the higher levels of C1 layer are computed by

taking a 3D max over higher levels of S1 layer. As can be seen in Figure

7.2, the higher levels of the pyramid in the S1 and C1 layers represent

less detailed information from the image. All levels in the C1 intermediate

layer are used for sampling a dictionary of features.

Dictionary of Features and Distance Table

Once the C1 layer is created, sampling is performed by centering patches

of size 4 × 4 at random positions and scales using a normalized random

number generator function. A distance table is created to store the ac-

tual weighted Euclidean distances of the indices from YIQ quantization

cores. Since the values of the Y channel are normally distributed between

[0, 1], but the values of I and Q channels fall in the approximate range

of [−0.6,+0.6] and [−0.5,+0.5] respectively, and as in most of the images

the actual values of these two latter channels fall between [−0.1,+0.2] and

[−0.1,+0.1] (before normalization to [0, 1]) we weighed the distances to

have an equal effect in the distance calculation. The distance table weights

are calculated as:

DistanceTable(i, j) =
√
D(1) + γD(2) + βD(3)

Where D(k) = (Y IQCore(i, k)− Y IQCore(j, k))2 (6.1)

with γ = 3.3 and β = 5. In (Jalali et al., 2010) and (Jalali et al., 2012)

various clustering methods in the creation of the dictionary of features were
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implemented and it is shown that by use of random sampling in HMAX

model, relatively good results can be achieved with a lower computational

cost in comparison with clustering of features.

S2 Layer

Once the dictionary of features and the distance table are created, each

entry in the dictionary of features is used as a filter to be convolved on C1

patches of size 4× 4 on the neighbor scales of the dictionary feature in the

pyramid. The responses V (d, p) of each dictionary feature, d to all of the

neighbor patches of the same size in ±1 scale and ±10% in position, p are

calculated using a Euclidean distance equation as:

V (d, p) = exp

(
−‖ d− p ‖

2

2σ2α

)
(6.2)

where d is a feature in the dictionary and p is a patch in the image C1

pyramid. σ and α are set to 0.5 and 1 respectively as in (Mutch et al.,

2010a).

C2 Layer

Once the S2 layer is generated, the maximum values for each patch in

the dictionary are taken as the C2 output. This layer outputs a vector

of the same size as the dictionary of features. We chose different sizes for

the dictionary of features and in most cases a dictionary of size 10000 was

chosen which results in slightly better performances than smaller sizes of

about 1000 dimensions.
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Classification Layer

The C2 vectors are classified using a multi-class one-vs-rest linear ker-

nel support vector machine. The algorithm used to train the classifier is

weighted regularized least-squares after the data is sphered and the mean

and variance of each dimension are normalized to zero and one respectively

as in (Mutch and Lowe, 2008).

Use of HMAX and HMean for Encoding Shape Infor-

mation

In order to implement the use of shape information, we use the HMAX

model presented in (Mutch and Lowe, 2008) with the code provided in

(Mutch et al., 2010a) and our HMean model presented in (Jalali et al.,

2012) as described in detail in Section 5.3. The final model that encodes

all shape and color information, is shown in Figure 6.2.

When using HMAX and HMean model, we have used different param-

eters for different datasets to achieve the best performance using shape

information following (Zhang et al., 2012). However, the parameters used

for CQ-HMAX are uniform in all datasets. In Section 6.3 an extensive set

of experiments are provided and these methods are explored and compared

in classification tasks over several datasets.
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Figure 6.2: The overall model using both shape and color information. Dotted

lines represent an extension in which C1 layer is eliminated and S1 information

are directly used to create a dictionary of features and to calculate S2 and C2

features.

6.3 Experimental Results

First we examine the näıve use of color by computing various color

spaces (RGB, HSV, YIQ) on the Caltech101 dataset (Li et al., 2004) and

compare the results with grayscale images. The Caltech 101 dataset, in-

cludes 101 classes of objects plus a background category. Each class con-
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tains between 31 to 800 color images of different sizes. The size of each

image is approximately 300× 200 pixels on average. We used 30 randomly

chosen images for training from each class and the rest of the images were

used in the test phase. Some sample images of this dataset are shown in

Figure 5.7a. We first divide the images into three channels and feed them

to the unmodified HMAX (Mutch and Lowe, 2008) directly and evaluate

the classification performance.

Color Component Performance

Y channel (i.e. gray scale) 54.65% ±1.2

I channel 35.20% ±2.1

Q channel 26.86% ±3.2

YIQ channels concatenated 55.06% ±1.0

RGB channels concatenated 26.53% ±4.3

HSV channels concatenated 31.32% ±5.7

Table 6.1: Näıve use of various color channels and color spaces.

As shown in Table 6.1, the use of three different channels and concatenating

the C2 vectors of all channels to the SVM does not provide any significant

improvement. Hence, we explore the use of color using the CQ-HMAX

model described in detail in Section 6.2. In the rest of this chapter, we

evaluate our model on four datasets: Caltech101, 8 Scenes, 17 Flowers and

Soccer.
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Caltech101 Dataset

The results of using CQ-HMAX on Caltech 101 are shown in Table 6.2.

All experiments are performed 8 times on random splits of training and test

sets and the average performance is reported. As can be seen, the use of our

color model in this dataset does not outperform the HMAX performance.

However, when the C2 features of the color model are concatenated with

C2 features of HMAX and HMean models, the classification results out-

performs the existing state of the art performances on biologically inspired

approach of HMAX models and results in an approximately 7% improve-

ment on HMAX and about 9 − 10% when used with both HMAX and

HMean C2 vectors and the final model which uses both shape and color

information has the best performance. HMAX is a computationally expen-

sive model as Gabor filter responses over different orientations in S1 layer

are calculated. However, CQ-HMAX is relatively faster than HMAX as it

performs a quantization with 125 cores in the S1 layer instead of Gabor

filters. Adding HMean also does not add much computational costs as it

uses the S2 responses calculated in HMAX model.

8 Scenes Dataset

This dataset is introduced in 5.5.1.

As can be seen in Table 6.2, the use of HMAX and HMean signifi-

cantly improves classification performance when concatenated with color

and it outperforms the use of GIST algorithm by about 3% proposed in
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Model Caltech101 8Scenes 17Flowers Soccer

HMAX

(i.e shape)

54.65% ±1.2 71.48% ±2.1 42.54% ±3.7 24.76% ±4.2

CQ-HMAX

(i.e. color)

38.11% ±2.1 69.21% ±1.2 77.64% ±0.8 77.14% ±0.9

CQ-HMAX

+ HMAX

61.09% ±1.7 78.97% ±1.3 69.21% ±2.1 66.67% ±3.1

CQ-HMAX

+ HMAX +

HMean

64.39% ±0.6 86.54% ±0.9 78.31% ±0.6 71.42% ±1.2

Table 6.2: Experimental results of the use of CQ-HMAX color model in con-

catentation with HMAX and HMean on Caltech101, 8 Scenes, 17 Flowers and

Soccer datasets.

(Oliva and Torralba, 2001). Sample images of this dataset are shown in

Figure 5.7b. The classification results achieved using a combination of CQ-

HMAX, HMAX and HMean are as good as the state-of-the-art performance

of 87.1% in (Zhang et al., 2012).

Flowers Dataset

The 17-category Flowers dataset (Nilsback and Zisserman, 2006) is in-

troduced in Chapter 5.5.1.

The classification accuracy in different classes ranges from 43.33% (for

category 1) to 100% (for category 2). As can be seen in Figure 6.3, the

distribution of the color cores in category 1 (Figure 6.3a) and the average
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Figure 6.3: Histograms of color cores using a one-vs.-rest classification scheme

in Flowers dataset. Accuracy for categories 1 and 2 are 43.3% and 100% re-

spectively. a. Category 1. b. Average of all categories except category 1. c.

Category 2. d. Average of all categories except category 2.

of all classes except category 1 (Figure 6.3b) are quite similar while the

color distribution for category 2 (Figure 6.3c) and the average of all classes

except category 2 (Figure 6.3d) are quite different. This suggests that our

hard-coded quantization scheme should be further optimized in a dataset

and class-specific manner. Further discussion is provided in Section 6.4.

Our classification results are as good as using hue/SIFT model of (Zhang

et al., 2012) when using both shape and color information but not as good

as 83% of their SODO-HMAX.
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Soccer Dataset

The Soccer team data set is introduced in Chapter 5.5.1.

As can be seen in Table 6.2, the use of CQ-HMAX model provides

significant improvements over using shape based HMAX model. Since the

images from different classes share similar shapes, using color results in

better performance than shape.

Underwater Images Dataset

We also evaluated CQ-HMAX on the Underwater Images dataset Jalali

et al. (2013c). This dataset is made of 1664 images of around 740 x 420

pixels from 13 different categories and sample images are shown in Figure

5.8. We used 30 randomly selected images per category for training and the

rest for testing. These underwater images contain small objects of various

shapes and color against a varied seabed background. The main challenge

with these images is in light absorption by the water, and the existence

of particles that limit visibility and result in scattering and reflection of

light. In this experiment, we created a set of images using both grayscale

and color cameras and compared the performance of CQ-HMAX on color

images and HMAX on grayscale images. The classification accuracy on this

dataset using HMAX is 92.93 %, CQ-HMAX is 94.03 % and combination

of HMAX and CQ-HMAX results in 96.23 %.
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Direct Use of S1 Features

As can be seen in Figure 6.2 (the final model), we have also exper-

imented using only S1 features directly which makes the model simpler

and faster but does not result in better classification performances over all

datasets. In this extension, S1 features are used directly (the C1 layer is

eliminated) and the dictionary of features is created by randomly sampling

from S1 features and the S2 and C2 layers are created using these features.

Since the S1 features are more selective and C1 features provide more in-

variance, the performance of S1 layer is slightly better than C1 features in

datasets that fine-grained discrimination among categories with relatively

similar shapes and colors such as Flowers. However, in datasets such as

Scenes and Caltech101, the C1 performance is better than the S1 level.

The performance of S1 and C1 models is equally good in Soccer dataset.

6.4 Discussions

(Zhang et al., 2012) proposed a new biologically inspired color descrip-

tor that encodes color information in a low-level manner. In their model,

they create 8 channels of opponent colors: R+G−, R−G+, R+C−, R−C+,

Y +B−, Y −B+, Wh, Bl and used these channels to calculate the Gabor fil-

ters on different orientations and used them to create Single-Opponent and

Double-Opponent channels. We explored the use of these color channels

as inputs to HMAX and CQ-HMAX on Soccer and Flowers dataset and

but use of these color channels as input to HMAX did not per se result in
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any significant improvement to the classification results. The first row of

results in Table 6.3 show the classification accuracy over different datasets

using HMAX. Using CQ-HMAX vectors (second row) along with HMAX

C2 vectors resulted in a better performance, but below the state-of-the-art

of the (Zhang et al., 2012) as can be seen in the third row. In order to eval-

uate the combination of the SODO-HMAX model of (Zhang et al., 2012)

with our model, which is a high-level color model, we concatenated their

SODO-HMAX features with our CQ-HMAX features. In SODO-HMAX,

Single-Opponent features encode color regions and Double-Opponent fea-

tures encode color edges. The last row in Table 6.3 shows the performance

of concatenating the C2 features from CQ-HMAX with SODO-HMAX fea-

tures from (Zhang et al., 2012) which results in the best performance using

bottom-up approaches on Soccer and Flowers dataset.

This significant improvement is encouraging and this motivates us to

evaluate different combinations of these two models (not only concatenat-

ing features, but to merge these two models in a more principled manner)

over other datasets which will be further evaluated in future work. The use

of SO features for Soccer dataset in this experiment resulted in a better

performance (2%) than use of SODO features as Soccer dataset is more

sensitive to color information and the addition of more shape information

results in lower performance (e.g. similar patterns on players’ shirts but

in different colors). The use of SODO-HMAX features for Flowers dataset

resulted in better performance (3%) in-line with the results in Table 6.2

where the use of shape and color works better than using each one individ-

123



ually.

Model Soccer Flowers

HMAX on RGYBRCWB 53.33% ±2.2 62.14% ±1.3

CQ-HMAX 77.14% ±0.9 77.64% ±0.8

SODO-HMAX (Zhang et al., 2012) 87.61% ±1.5 83.13% ±1.2

CQ-HMAX + SODO-HMAX 93.33% ±0.9 90.14% ±0.3

Table 6.3: Classification accuracy on the Soccer and Flowers datasets using

different color channels and Single Opponent and Double Opponent features of

(Zhang et al., 2012).

As shown in Figure 7.2, the S1 and C1 layers resemble a segmentation

of the images. The use of these layers in the middle layers along with

bottom-up and top-down interactions is a prospective extension to this

model. In this extension, we will compute a set of clusters based on the S1

and C1 layers and use these clusters to confirm the similarity of an image to

a category cluster after the SVM has classified an image (to double confirm

the classifier output) which adds top-down, bottom-up interactions in the

model. Further details of this method will be explored in future work.

As explained in Section 6.3, when the colors in different classes are sim-

ilar, a lower classification accuracy is achieved. In order to optimize the

color core selection, a learning system can also be used in which color cores

are defined based on an unsupervised clustering in which more frequent col-

ors in each dataset are chosen as color cores. This will be further explored
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in future work.

Currently, our model quantizes the YIQ color space into arbitrarily-

spaced cubed-shaped “color cores” at the S1 layer. Following the work of

Shahbaz Khan et al. (2012) and Van De Weijer and Schmid (2006), learning

the color values that correspond to semantic color names such as “orange”,

“brown”, could also further improve performance.

In this chapter, we introduced a new biologically inspired approach to

image classification that uses color in a manner consistent with high-level

visual cortex by incorporating insights from cognitive psychology and neu-

roscience. We implemented the use of Max and Mean pooling operators

and color information and showed that the use of color on some datasets

outperforms shape information significantly and on some other datasets it

helps achieve a better performance when added to shape information. We

ran this model on several datasets such as Caltech101, Soccer, Flowers and

Outdoor Scenes. The combination of our color features with (grayscale)

shape features leads to double-digit average increases in performance over

shape features alone. Using our model, performance is significantly higher

than using color naively, i.e. concatenating the channels of various color

spaces. Among approaches that use bottom-up information only, the com-

bination of three sets of biologically-inspired features (our high-level color

features with existing low-level color features of Zhang et al. (2012) and

HMAX grayscale shape features of Mutch and Lowe (2008)) achieves the

best performance to date on the Soccer and Flowers datasets.
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Chapter 7

Applications of Proposed

HMAX and CQ-HMAX

Models

In this chapter we introduce a few of the relevant applications of our

modified HMAX model, which includes the use of modified HMAX intro-

duced in Chapter 5 and the use of CQ-HMAX introduced in Chapter 6. In

this chapter, we use HMAX model for detecting mitosis in histopatholgy

images and compare the performance of our modified HMAX and CQ-

HMAX model with SIFT method.

0A part of the models and experiments presented in this chapter are published in

workshop on Histopathology Image Analysis (HIMA), MICCAI 2012 (Humayun et al.,

2012) and published in Journal of Histopathology Image Analysis (Humayun et al.,

2013). Other parts are accepted as two different publications in proceedings of the

International Joint Conference on Neural Networks IJCNN 2013 (Jalali et al., 2013b,a).
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7.1 Automated Mitosis Detection Using Tex-

ture, SIFT Features and HMAX Biolog-

ically Inspired Approach

Researchers in histopathology appreciate the importance of qualitative

analysis of histopathological images. These analyses are used to confirm

the presence or the absence of disease and also to help in the evaluation of

disease progression. Being important in diagnostic pathology, this qualita-

tive assessment is also used to understand the realities for specific diagnos-

tic being rendered like specific chromatin texture in the cancerous nuclei,

which may indicate certain genetic abnormalities. In addition, quantita-

tive characterization of pathology imagery is important not only for clinical

applications (e.g., to reduce/eliminate inter- and intra-observer variations

in diagnosis) but also for research applications (e.g., to understand the

biological mechanisms of the disease process (Gurcan et al., 2009)).

Co-occurrence features, run-length features and SIFT features were ex-

tracted and used in the classification of mitosis. We evaluate the perfor-

mance of the proposed framework using the modified biologically inspired

model of HMAX and com-pare the results with other feature extraction

methods such as dense SIFT.

7.1.1 Introduction

Nottingham Grading System (Bloom and Richardson, 1957) is an in-

ternational grading system for breast cancer recommended by the World
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Health Organization. It is derived from the assessment of three morpholog-

ical features: tubule formation, nuclear pleomorphism and mitotic count.

Several studies on automatic tools to process digitized slides have been

reported focusing mainly on nuclei or tubule detection.

Mitosis detection has diagnostic significance for some cancerous condi-

tions. Indeed, mitotic count provides clues to estimate the proliferation and

the aggressiveness of the tumor (Elston and Ellis, 2002) and is a critical step

in histological grading of several types of cancer. In clinical practice, the

pathologists examine proliferated area and determine mitotic count after a

tedious microscopic examination of hematoxylin and eosin (H& E) stained

tissue slides at high magnification, usually 40X. The area visible in the mi-

croscope under a 40X magnification lens is called a high power field (HPF).

This mitotic counting process is cumbersome and often subject to sampling

bias due to massive histological images. This results in considerable inter-

and intra-reader variation of up to 20% between central and institutional

reviewers in tumor prognosis (Teot et al., 2007). In histopathological image

analysis, the accuracy of mitosis detection is crucial in order to identify the

severity of the disease.

Mitosis detection is a difficult task having to cope with several chal-

lenges such as irregular shaped object, artifacts and unwanted objects be-

cause of slide preparation and acquisition. Mitosis has four main phases

and each phase has different shape and texture. It is also observed that

artifacts produce objects which look similar to mitosis. As a result, there is

no simple way to detect mitosis based on shape and pixels values. However,
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the major problem is the very low density of mitosis in a single HPF. It is

not unusual to have an HPF without any mitosis.

7.1.2 Framework

We propose a color image processing-based strategy for mitosis detec-

tion in H& E images. The aim is to improve the accuracy of mitosis de-

tection by integrating the color channels that better capture the texture

features which discriminate mitosis from other objects. Two main stages

are involved in the proposed methods as shown in Figure 7.1. In the first

stage, we perform detection of candidate mitosis. The input RGB images

are transformed into blue-ratio images (Chang et al., 2012). We perform

Laplacian of Gaussian (LoG), thresholding and morphological operations

on blue-ratio images as in Chang et al. (2012) to generate candidate mitosis

regions.

In the second stage, we compute co-occurrence features, run-length fea-

tures and SIFT features for each region, and select those features having

better discrimination of mitosis regions from others. Finally a classification

is performed to put the candidate region either in the mitosis class or in the

non-mitosis class. Three different classifiers have been evaluated: decision

tree, linear and non-linear kernel SVM. We also evaluate the performance

of the proposed framework using the modified biologically inspired model of

HMAX and compare the results. Modifications made to the original HMAX

model for this experiment, include removal of S2 inhibition in Mutch and

Lowe (2008), Calculating the max in C2 layer over a ±1 in scale and ±10%.
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However once the features fall on the max or min scales or are close to the

borders, the ±2 scale and/or ±20% position invariance is considered.

Figure 7.1: Framework for mitosis detection.

7.1.3 Experimental Results

We evaluated the proposed framework on MITOS dataset

(http://ipal.cnrs.fr/ICPR2012, 2012), a freely available mitosis dataset.

This dataset consists of 35 HPF images at 40X magnification. A HPF

has a size of 512 × 512 m2 (that is an area of 0.262 mm2), which is the

equivalent of a microscope field diameter of 0.58 mm. Each HPF has a

digital resolution of 2084×2084 pixels. These 35 HPFs contain a total of 226

mitosis. The pathologists have annotated mitosis manually in each HPF

images. 25 HPFs containing 154 mitosis will be used for training purpose,

the remaining 10 HPFs containing 72 mitosis being used for testing.

A comparison of all different classification methods is presented in Table
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7.1. One of the parameters that affect our experiments is existence of no

balance between the number of mitosis and non-mitosis regions. When we

used this dataset for training the classifier, then most of the classifiers are

biased toward non-mitosis which resulted high number of false positives.

Method TP FP FN TPR PPV F-Measure

Texture with linear SVM 183 636 43 0.81 0.22 0.35

Texture with non-linear SVM 174 358 52 0.77 0.33 0.46

Texture with Random Forest (Tree) 185 47 42 0.82 0.80 0.81

SIFT with SVM 203 647 23 0.90 0.24 0.38

HMAX 205 151 21 0.91 0.57 0.71

HMAX (generative features) 213 171 13 0.94 0.56 0.70

CQ-HMAX 217 92 2 0.96 0.63 0.76

Table 7.1: Results of different Classifiers (Ground Truth = 226).

7.1.4 Discussion

In the first method, we used linear and non-linear SVM and random

forest classifier on texture features. As compared with linear kernel, the

experiments with non-linear kernel resulted in better performances in terms

of less false positives but less true positives as well. When we used selected

texture features with random forest, an ensemble classifier consisting of

many decision trees, we achieved classification with low false positives and

high PPV and f-measure. The random forest classifier has better results as
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compared to other classifiers because of balancing error in class population

unbalanced datasets. 1

SIFT features are also examined in this study, but due to the lack

of balance between number of mitosis and non-mitosis regions, the SIFT

method does not perform as good as other methods. As can be seen in

Table 7.1, we have also used HMAX model to train a dictionary of fea-

tures from local max on Gabor filter responses over 12 orientations which

resulted in high true positives but high false positives as well. The dimen-

sionality of features in HMAX model is directly related to the size of the

dictionary of features and we evaluated different sizes over several runs and

used the optimum numbers. A global dictionary of features from genera-

tive images (Caltech101) was also used in another experiment to evaluate

the performance of different dictionaries on these images and interestingly

achieved almost the same results. It is because of the nature of this model

in which the statistics of natural images are en-coded. However, using a

non-linear kernel for SIFT and HMAX, in which the features dimensions

are high, (order of 10000) results in over-fitting which resulted in lower

classification accuracy. We also used the RGB images and fed them to the

CQ-HMAX structure described in Chapter 6 and very high classification

results were achieved. However since the PPV and F-Measure are directly

related to the number of FP and FN, the final accuracy of these methods

1The material in this section, regarding introduction of mitosis dataset, image seg-

mentation and selecting candidate patches are carried out by Humayun Irshad, in collab-

oration with Image and Pervasive Access Lab (IPAL) and different classification methods

such as SVM, SIFT, HMAX and CQ-HMAX models are carried out by Sepehr Jalali.
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is not the best. In a new dataset of color images extracted from mito-

sis dataset, HMAX accuracy is about 10% where CQ-HMAX outperforms

HMAX significantly and results in classification accuracy of 30%. Further

investigation of CQ-HMAX model is in progress.

7.2 Classification of Marine Organisms in

Underwater Images using CQ-HMAX

In many coastal environments, particularly in tropical zones, coral reef

ecosystems have exceptional biodiversity, contribute to coastal defense, pro-

vide unique and important habitats and valuable commercial resources.

Assessment of environmental impacts on biodiversity in such areas are in-

creasingly important to mitigate potential adverse effects on specific ecosys-

tems. Visual classification of marine organisms is necessary for population

estimates of individual species of corals or other benthic organisms. In

this chapter, we introduce a new image dataset of benthic organisms that

are of different colors, shapes, scales, visibility and are taken from differ-

ent viewpoints. We evaluate several different classification approaches on

this dataset, and show that CQ-HMAX, results in better classification re-

sults in comparison with existing computational models such as support

vectors machines, SIFT based approaches and the HMAX biologically in-

spired approach. We show that concatenating our model which encodes

color information with the HMAX model which encodes grayscale shape

information results in the highest classification accuracy.
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Figure 7.2: The hierarchical structure of integrated HMAX and CQ-HMAX

models.

Our final model is based on the concatenation of CQ-HMAX and HMAX

models as shown in Fig. 7.2.

134



7.2.1 SIFT Features

Scale Invariant Feature Transform (SIFT) feature extraction method

(Lowe, 1999) is a well-known method which has produced promising results

in classification tasks. Here we investigate its application in classification

of marine organisms. In SIFT methods, a series of features are calculated

using difference of Gaussian (DoG) methods over different scales. Once a

set of features are selected, features from new images are compared with

these candidate regions using their Euclidean distance and from the full set

of matches. A subset of key point features which agree on the object, its

scale, orientation and location in the new image, are identified to filter out

good matches. Finally a histogram of features is calculated and the final

histograms are sent to a SVM classifier. In this experiment we use PHOW

features (dense multi-scale SIFT descriptors (Bosch et al., 2007)), Elkan

k-means for fast visual word dictionary construction, spatial histograms as

image descriptors, a homogeneous kernel map to transform a Chi2 support

vector machine (SVM) into a linear one and finally an internal SVM for

classification using VLFeat toolbox Vedaldi and Fulkerson (2010).

7.2.2 Marine Organisms Dataset and Experimental

Results

The marine benthic organisms dataset includes 19 classes of marine

organisms that grow on or are closely related to the benthos (the seabed).

Each class contains between 60 to 300 color images of different sizes. The

size of each image is approximately 5000 × 3000 pixels. However, due to
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Figure 7.3: Sample images from the marine organisms dataset.
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high computational costs, images are resized to approximately 500 × 300

pixels, while maintaining the aspect ratio. We used 30 randomly selected

images for training from each class and the rest of the images were used in

the test phase. Sample images of every class of this dataset are shown in

Figure 7.3.

Many benthic marine organisms have several distinguishing factors which

set them apart from each other. Some visual characteristics of some of the

classes used are as follows: boulder or submassive corals are easily differ-

entiable from others by their roughly spherical shape which is similar in

all dimensions except the base which is flattened. The foliate organisms

have a leaf-like appearance with folded plates or spires extending upwards.

Branching corals have an outward growth of branches which have primary

and secondary branchings, unlike digitate forms which do not have sec-

ondary branches. The plate-like corals have laminar and flattened sheets

which may be vertical or horizontal. Mushroom soft corals have a unique

appearance of a flat uneven circle or oval. Anemones have a single body

with tentacles radiating in all directions. With all these distinguishing

factors and more, the model recognizes and is able to differentiate them,

hence providing us with useful identifications. In this dataset, we have

19 categories (and sub-categories) of benthic marine organisms: 1- Algae,

2- Anemone (Lily), 3- Anemone (Reef), 4- Body Sponge, 5- Boulder, 6-

Branching, 7- Branching (Soft), 8- Digitate, 9- Encrusting, 10- Foliate, 11-

Mushroom Coral, 12- Mushroom (Soft Coral), 13- Plate, 14- Seafan (Soft

Coral), 15- Seagrass (Sargassum), 16- Zoanthids, 17- Seagrass (Seaweed),
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18- Stem Sponges, 19- Tubulate.

We evaluated different classification methods on this dataset such as

naiive use of SVM in which images are resized to the size 160 × 90 pixels

and sent to a linear kernel classifier (in all HMAX and CQ-HMAX exper-

iments, image resolution is reduced to 140 × Si where Si is dependent on

the aspect ratio). In other experiments, we used HMAX and SIFT meth-

ods. As can be seen in Table 7.2, the use of CQ-HMAX model provides

significant improvements over using shape based HMAX model and when

this model is concatenated with HMAX model, the highest accuracy is

achieved. Feeding images directly to a support vector machine results in

a very low classification accuracy of 20.5 %. When HMAX model is ap-

plied on this dataset, and scale invariant features are extracted, a boost

in classification is achieved to enhance it to 40%. A SIFT based method

results in about 52 % accuracy on this dataset. The use of CQ-HMAX

results in better classification accuracy than SIFT and HMAX and reaches

56.2 %. Concatenation of C2 vectors of HMAX model (shape features)

with CQ-HMAX model (color features) results in the highest classifica-

tion accuracy of 61.2 % on this dataset. These results are inline with the

previous experiments carried out on the CQ-HMAX model in Jalali et al.

(2013d) where concatenation of HMAX and CQ-HMAX models results in

a better classification accuracy in several datasets such as Flowers, Soccer,

Caltech101 and Scenes. In this section, concatenation of CQ-HMAX with

SODO-HMAX model of Zhang et al. (2012) results in classification accu-

racy better than the state of the art in Soccer (Van De Weijer and Schmid,
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2006) and Flowers (Nilsback and Zisserman, 2006) datasets.

Classification Model Performance

SVM 20.54 ± 1.8%

HMAX (Grayscale) 39.61 ± 1.2%

HMAX (Red Channel) 40.94 ± 1.6%

HMAX (Green Channel) 39.92 ± 2.3%

HMAX (Blue Channel) 41.13 ± 1.7%

HMAX (RGB Channels) 48.22 ± 1.8%

SIFT 52.11 ± 1.1%

CQ-HMAX 56.23 ± 0.5%

HMAX + CQ-HMAX 61.18 ± 0.7%

Table 7.2: Classification accuracy on the marine benthic organisms dataset using

different methods.

7.2.3 Discussion

Using color information alone, we could achieve a higher classifica-

tion accuracy than using shape information alone. Combining color and

shape information in this classification task results in the best performances

achieved. As can be seen in Figure 7.4, CQ-HMAX (red bars) outperforms

HMAX model (blue bars) in almost all classes.

One of the classes in which CQ-HMAX significantly improves over

HMAX are class 17 and 18 (Seagrass/ seaweed and Stem Sponges) where
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Figure 7.4: Comparison of HMAX and CQ-HMAX classification accuracy.

images have similar colors, but are of different viewpoints, scales and ori-

entations. A few samples of this class are shown in Figure 7.5a,c. On the

other hand, in classification of images of Seafan category (Class 14) shown

in Figure 7.5b, HMAX performs slightly better than CQ-HMAX and this

is due to the variety of colors in images of Seafan category and the consis-

tency of oriented edges. In most of the other classes, CQ-HMAX performs

as well or better than HMAX. Class 2 (Lily Anemone) has the highest clas-

sification accuracy in HMAX model, and the accuracy is equally as good

as CQ-HMAX. This is due to consistency in the oriented bars, and having

enough training samples from different colors of this class.

As shown in Table 7.2, the use of SVM on the raw pixels does not result

in a high classification accuracy and this is due to the different intraclass

viewpoints, scales and varieties in the colors. Hence a model that is more

invariant to the viewpoints and scales would match this dataset better.

SIFT based methods and HMAX model, both provide invariance to scale

and position of the features, however they are also selective to the intra-

class variations when the orientations of the edges are very random among
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Figure 7.5: Sample images from different classes to compare the classification ac-

curacy of HMAX and CQ-HMAX. a) Seagrass (Seaweed) where CQ-HMAX sig-

nificantly outperforms HMAX. b) Seafan soft coral, where HMAX has a slightly

higher classification accuracy than CQ-HMAX. c) Stem Sponges, where CQ-

HMAX significantly outperforms HMAX. d)Lily Anemone, where HMAX and

CQ-HMAX have equal classification accuracy.
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images in the same class.

Since this is a dataset of live organisms which generally do not have a

firm rigid structure, and the images are taken from different viewpoints,

these models do not provide the highest classification accuracy. On the

other hand, CQ-HMAX model is very invariant to changes in the rotations

of the edges in the images and encodes the color information which is an

important characteristic in this model. As Table 7.2 shows, the use of R, G

and B channels separately does not result in any significant improvement

but their combination results in a better classification accuracy which is

below the CQ-HMAX model as HMAX model is more orientation based. As

Figure 7.4 shows, the classification accuracy achieved with HMAX model

is highest in Class 2 (Fig. 7.5d) where the orientation of lines in the images

are consistent.

Another interesting characteristic of these two models is that despite

having a similar accuracy in many classes, concatenation of the two models

results in a better classification.

One of the future applications of this model is to enable an automatic

system for classification of marine organisms underwater in certain areas

to investigate their abundance. Since the classification accuracy achieved

with our model is very reasonable (about 61%) and in real life situations

the number of classes in a specific area are often fewer than the classes

covered in this dataset, this accuracy will probably improve and hence this

model could be used for segmenting the images and classifying the marine

organisms into broad classes.
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7.3 The Use of Optical and Sonar Images in

the Human and Dolphin Brain for Im-

age Classification

In this section we propose a new biologically inspired model which sim-

ulates the visual pathways in the human brain used for classification of

matching optical and sonar derived images. Marine mammals, such as

dolphins, that live in waters with poor optical clarity and low light levels

such as littoral zones, use a combination of optical vision and biosonar to

navigate and hunt for prey. Given that dolphins have evolved a synergistic

combination of optical visual input and acoustic/sonar input, the primary

focus of this section is on reaching a similar level of synergy for a diver or

Autonomous Underwater Vehicle (AUV) platform equipped with a system

to extend the range and resolution of vision in poor ambient visibility. We

propose a biologically inspired model that combines and processes visual

images acquired via optical and acoustic pathways and show that the com-

bined model enhances the accuracy of automatic classification of target

objects in underwater images.

7.3.1 Similarities between Auditory and Visual Sys-

tem in Mammals

In this section, we review the similarities between the organization of

the auditory system and the visual system in mammals. While there are im-
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portant differences between the two systems (King and Nelken, 2009), there

are also important broad similarities, such as hierarchical organization, or-

ganization into parallel streams and topographic mapping (Rauschecker,

1998; Rauschecker and Scott, 2009). In this section, we take the view that

these gross similarities may be sufficient for a model of visual processing to

be also used for auditory processing. In the case of sonar, actual pixel im-

ages can be produced (using techniques described elsewhere in this section).

As such, using the HMAX model of visual processing on such “auditory”

data is not as outlandish as it sounds.

Broadly, the auditory system seems to be geared toward producing a

semantic auditory scene from raw sound intensities, similar to the way

the goal of visual processing is to perform semantic scene analysis from

raw pixels. Like the visual system, the auditory system is hierarchically

organized (Okada et al., 2010; Chevillet et al., 2011; Talkington et al.,

2012). In addition, the system is organized into two separate, but interact-

ing, streams (Romanski and Averbeck, 2009). The ‘where’ stream handles

spatial processing, while the ‘what’ stream handles non-spatial processing

(Rauschecker and Tian, 2000; Kuśmierek et al., 2012). In both cases, hier-

archical processing in the ‘what’ stream gradually produces outputs at the

higher levels that correspond to semantic features (e.g. objects) (Nelken,

2004) that are invariant to low-level sources of variation such as object

location and intensity. Analogous to the increase in spatial receptive field

size up the hierarchy of the visual system, the temporal receptive field size

similarly increases up the hierarchy of the auditory system (Lerner et al.,
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2011).

Interestingly, there is also some evidence that at the level of individ-

ual neurons and small scale neuronal circuitry, both systems could in fact

be implementing similar computations. For ferrets in which outputs of

the retina are rewired to feed to the primary auditory cortex (instead of

primary visual cortex), these rewired auditory cells develop a number of

properties found in primary visual cortex (Roe et al., 1990, 1992; Sharma

et al., 2000; Sur and Leamey, 2001). These results suggest that the same

basic computations underlie processing in both the visual and auditory sys-

tems, and the key differences could really just be due to the difference in

inputs.

Our biologically inspired model of sonar and image classification is sim-

ilar to the one described in Mutch and Lowe (2008). This model which is

an extension of HMAX model, has a hierarchical structure as shown in Fig.

7.6.

7.3.2 Combination of Optical and Sonar Images

Our model is a combination of HMAX model for both optical images

and sonar images as shown in Figure 7.6. Two parallel structures of HMAX

are provided and the final C2 vectors of image and sonar features are

concatenated to be fed to the classifier.
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Figure 7.6: The hierarchical structure of our dual model.

7.3.3 Experimental Model and Dataset

In this section, we introduce our dataset to evaluate our model. This

dataset consists of two sub-sets: optical and sonar images.

7.3.4 Diver Sonar and Optical Images

In order to explore the synergy between biosonar and optical images a

data set was generated based on the physics of the acquisition of optical
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images and sonar images in the underwater environment. The theoretical

situation is that a diver has an optical visual system, and is equipped

with a hand-held sonar unit which outputs a sonar image. We explore

classification schemes such as HMAX to classify known target shapes in

the optical images and the sonar images, and compare each of them to

the synergistic combination of the optical and sonar images. In order to

have greater control over the input in the first iteration of this approach, a

simulated data set was generated. The parameters for the the model were

the target shape, range to the target, the angle of the target to the diver,

and the type of visual noise environment.

Optical Images

The optical images of the targets were synthesized based on target

shape, range and angle to the viewer. The brightness of the target shape

was reduced as a function of the range squared, representing the spher-

ical light loss. The target image was merged with a random still frame

taken from one of three videos. The videos were taken from one of three

video recordings made during a variety of lighting conditions: in the late

afternoon, dusk, and at night.

The video camera was hand held by a diver at mid-water column point-

ing horizontally. The Secchi depth, the distance beyond which a standard

target (a Secchi disk marked with two black and two white quadrants)

could no longer be seen was measured to be 2 meters) was measured to be

2 meters. The model was calibrated to match this distance.
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Figure 7.7: Target visibility reaches zero at farther ranges. Sample images of

targets at range 3 meters.

At night a dive torch was used to illuminate the scene. The particulate

matter in the water column is particularly apparent at night where there is

considerable backscatter from the particulates. Figure 7.7 shows all targets

(description of shapes) used in this experiment at a range of 3 meters. As

this figure shows, none of the targets are visible at this range.

Sonar Images

Imaging sonars work by emitting a short pulse of acoustic energy and

receiving any target reflections on an array of spatially distributed sensors.

Then a process known as beamforming is employed to derive an image from

the acoustic data.

We modeled the reflection of dolphin-like, Gaussian windowed pulses, 4

cycles in duration with center frequency of 130 kHz from the different target

shapes, and consequent reception using an array of spatially distributed
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sensors. The acoustic reflection from a target was modeled by considering

it to be made up of acoustic emitters forming the shape of the target.

Since the dolphin-like click is short and well defined in time, the time that

it arrives on sensor can be determined. By triangulation of the time of

arrival on each sensor the direction of the source can be determined. It is

important that the array is large enough such that arrivals are unique to a

given point in space. Technically, this is a sparse array, since the spacing

of the sensors is much greater than the wavelength of 130 kHz. The targets

were all 25 cm in width and height. The receiver array was formed by

using 64 sensors arranged in an 8 by 8 regular square grid, over a length

and breadth of 0.6 m.

To form an image, sparse array beamforming is carried out in 3D space.

If the echo came from point x,y,z then the theoretical time of arrival on each

sensor can be calculated from geometry. At each corresponding arrival time

in the timeseries for each sensor, a window is centered at the delay, and the

windows are averaged across sensors to determine how much energy came

from that position. The window length determines the dimensions of the

volume pixel (Voxel) around each point in 3D space. Typically the window

length is chosen to be the same length as the source signal. Due to refraction

and the long wavelength of acoustic waves in water, wavefronts tend to be

curved, especially at shorter ranges, hence reflections from the edges of the

target come back later than those from the center. Since time and range

are interchangeable, several range slices have to be considered to represent

the target shape. In this simulation the times series was beamformed at

149



16 ranges centered around the target. The range slices are rearranged and

presented as a 2D image suitable for input to the HMAX model.

At 120 to 130 kHz the average peak-to-peak dolphin click level has been

observed to be in the order of 220 dB re 1 µPa @ 1 m. In Singapore waters

ambient noise in the same frequency band is typically 60 dB re 1 µPa @

1 m. Taking into account the two way range dependent spreading losses

given by 2 × 20 × log103 = 20db at 3 meters and target strength losses,

typically 10 db for an aluminum target, the Signal to Noise Ratio (SNR) =

130 dB over the range of the simulation. This has very little effect on the

sonar system. It also implies that maximum range of a dolphin bio-sonar

system is of the order of a few hundred meters. However, with increasing

range, the angles and hence the time differences get progressively smaller

between the array sensors, hence accuracy/resolution will drop.

7.3.5 Dataset

In this experiment, we created 6 classes of objects (rectangle, triangle,

vertical target, horizontal target, circle and cross) and recorded their images

underwater in average visibility in the daytime and at night. Images were

taken from 5 different viewpoints (15, 30, 45, 90, 115, 130 and 145 degrees)

and were taken at different ranges from 1-5 m in steps of 0.25 m. Sample

images of this dataset and their equivalent sonar images are shown in Figure

7.8. The dataset includes 155 images of each category at the short range,

60 images at the mid range and 60 images at the long range for the visual

images, and the same numbers for the sonar images. Fifty training images
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Figure 7.8: Sample pairs of images of camera and sonar taken at range 1.5m.

The images on the left of each pair show a visual image of an object and those

on the right are cuts from a 3D sonar image.

were randomly selected from each category in the short range subset and

the rest of the images formed the test set. Thirty training images were

randomly chosen from each category in the mid and long range subsets

and the remaining thirty images were used for testing.

7.3.6 Experimental Results

Table 7.3 shows the classification rates for the optical and sonar images

as a function of short (1 m to 2.5 m), mid (2.5 m to 3.5 m) and long

range (3.5 m to 5 m). Rates of classification for the optical images falls

off quickly with range: at long range the accuracy reaches 16% which is

about random class selection (since there are 6 classes in these experiments,
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chance is equal to 1/6). Sample images of targets at the long range are

shown in Figure 7.7.

Input Images Short Medium Long Average

Optical 92.7% ±1.1 43.3% ±4.8 16.7% ±0.1 50.9% ±1.5

Sonar 89.1% ±1.7 96.7% ±0.8 94.3% ±1.7 93.36% ±1.4

Optical + Sonar 97.8% ±0.9 92.7% ±2.2 94.3% ±1.2 94.9% ±1.4

Table 7.3: Classification accuracy using different ranges of images and sonar.

Short range is between 1 - 2.5m. Medium range is 2.5 - 3.5m and long range is

between 3.5 - 5m.

Rates of classification for the sonar images remain reasonably constant

at mid and long ranges, and clearly outperform the optical images. By

combining the optical and sonar images the classification rates are higher

than either optical or sonar images in short range. At far range, the clas-

sification accuracy of the combined model is as good as the performance

of the sonar model alone, and this shows that the support vector machine

classifier neglects the optical images as they do not contain any information.

Since the range to the target can be estimated from the sonar data

stream the best model can be chosen. However, this estimation requires

a separate setup and when the distance estimation is not available, the

combined model may be implemented since generally the combined model

of images and sonar performs as well or better than any individual model
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(except for the mid-range).

7.3.7 Discussion

The sonar images are somewhat difficult to interpret visually, but can

be classified accurately by the HMAX model, suggests that the sonar image

could be replaced by a pictorial representation of the target. This would be

far easier for a diver to interpret in difficult conditions such as encountered

when working underwater. Not only would this be less ambiguous but it

would reduce the time needed to interpret a sonar image, and anything that

both increases accuracy and saves time when performing tasks underwater

is important.

As Table 7.3 shows, the classification accuracy of the model at short

range is best when both optical images and sonar images are used. At

mid range, the sonar images outperform the combined model; however the

difference is negligible. When we position the targets at the far range,

the classification accuracy of the combined model is as good as the perfor-

mance of the sonar model alone, and this shows that the support vector

machine (SVM) classifier neglects optically derived images because they

do not contain any useful information. Generally the combined model of

images and sonar performs as well or better than any individual model at

short and long ranges. In a real application, the distance to the target can

be estimated by the signal acquired from sonar information and the more

accurate model may be chosen. However, the combined model can be used

without a significant loss in order to accelerate the classification process
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when the range of the target range is unknown. In a lower level task, sonar

information can also be used to simply detect the presence of an object -

any undefined object - which might be of practical importance.2

We have demonstrated that, as the evolution of echolocation or biosonar

shows, optical sensing of surface information of target shape produces

higher resolution images than sonar/ultrasound imaging due to the wave-

lengths of the signals used. However, the situation is complicated when

color is involved, and also when information on the material composition

of a target or it’s internal structure is important. In the former case, only

optical images contain relevant information and we will explore this as-

pect through the CQ-HMAX model we have successfully used previously

on various datasets Jalali et al. (2013d,b). It is also important to remem-

ber that ultrasonic imaging can give far greater 3D structural information

than conventional optical imaging (confoccal imaging is not applicable in

the current work) and this might be important both at short range even

though resolution is higher in optical images, but also at longer ranges.

The present work is the first stage towards producing the most informative

image.

Finally with regard to bio-sonar in dolphins, it is not clear how the dol-

phin forms a mental ‘image’. It is thought that the mandibles, particularly

in the lower jaw, received echolocation clicks to the inner ears, and perhaps

2The part on providing the SONAR and Visual images was carried out in collab-

oration with Dr Paul Seekings, the section on similarities between audio and visual

cortex is provided in collaboration with Dr Cheston Tan and the model proposal, and

experiments were done by Sepehr Jalali.
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the teeth act as complementary sensors. It would be interesting to repeat

the experiment carried out here, but using an auditory system model on

the timeseries received on a receiver array modeled on the jaw of a species

of dolphin with known echolocation abilities, and compare the output with

the results shown here.
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Chapter 8

Conclusion

In this thesis, we reviewed several biologically inspired models for im-

age classification in Chapter 2. We also touched on the most relevant

computer vision approaches and provided a discussion and comparison on

these models. We described the original HMAX model in Chapter 3 and

presented the existing modifications and improvements to this model in

detail. We proposed several modifications, enhancements and applications

for the HMAX model in the rest of the chapters.

We investigated different methods for the creation of the dictionary

of features and compared random and non-random sampling methods in

Chapter 4. We introduced several pooling methods and encoding of oc-

currence and co-occurrence of features in Chapter 5, followed by our new

biologically inspired color model in Chapter 6 and presented an application

for this model in Chapter 7. In this chapter we summarize the previous

chapters and our contributions, and suggest some directions for the future

work.
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8.1 Contributions

Image classification is a challenging problem in computer vision and it

remains an open research area as there is no perfect solution to this task.

Recently more scientists are looking into human (and other mammals) vi-

sual cortex for inspirations to find a better computational model. However

due to the complexity of the brain, the exact process in which the brain

carries out image classification and object recognition is far from being

well understood. Based on the current findings, a hierarchical structure is

proposed for simulating the human visual cortex. One of the models that

resembles this structure well is HMAX hierarchical approach (Riesenhuber

and Poggio, 1999) which models the first 150 ms of the bottom-up processes

in the human visual cortex.

In HMAX model, there is a S-C (simple-complex) interleaving struc-

ture in which S layers provide selectivity and C layers add invariance to

the features or filters. We explored several feature selection methods in the

middle layers of this structure and showed that the use of random sampling

from C1 layer in order to create a dictionary of features for S2 layer, per-

forms as good as non-random clustering of more features in many different

combinations when the spatial information of features and the occurrence

of features is neglected. This suggests that random sampling is an effective

fast method in comparison with clustering for creation of the dictionary of

features. However when the spatial information of features is used with a

higher number of clusters created and more repetitive ones in each class

are chosen for creation of the dictionary of features, a better classification
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accuracy is achieved.

This suggests that the use of this frequency information (similar to bag

of features) encodes useful information and can be used in HMAX struc-

ture. Hence, we evaluated different pooling methods and showed that using

MAX pooling along with Mean pooling, a better performance is achieved

on several datasets. Furthermore, we explored encoding co-occurrence of

features, and used the more frequent features as candidate features for

this. Using co-occurrence of features, results in a boost in classification

performance when a higher number of training images are available like in

a subset of Caltech256 dataset. This encourages encoding co-occurrence

of more than two features and using top-down information for selecting

more meaningful features such as ’eyes, nose, mouth, etc.’ for encoding co-

occurrence rather than selecting features based on their frequency alone.

The use of color information also showed no significant improvement

when naively added to the HMAX structure as three (RGB) parallel struc-

tures and concatenation of the final C2 features for feeding to classifier.

However, we proposed a new hierarchical biologically inspired color model

in which color quantization cores are used for quantizing the YIQ color

space, and a new structure similar to HMAX was proposed which resulted

in significant improvements on several datasets. Table 8.1, a summary of

the best classification accuracy achieved by applying different models in

comparison with HMAX model is provided.

In this thesis, we enhanced the performance of HMAX model on Cal-
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Database HMAX Improved Model

Caltech101 54.7 64.3

Caltech256 subset (14 classes) 60.2 64.4

Soccer 24.7 77.1

Flowers 42.5 78.3

Scenes 71.4 86.5

Underwater (good visibility) 92.9 99.0

Underwater (bad visibility) 50.9 94.9

Mitosis 10.1 30.5

Benthic Marine Organisms 39.6 61.1

Table 8.1: Comparison of HMAX performance vs. the best performance achieved

by a modified HMAX model on each dataset. The best performance is either

CQ-HMAX, Co-Occurrence HMAX, HMean or a combination of them.

tech101 dataset by adding HMean, and CQ-HMAX information to it. We

outperformed the state-of-the-art performance on Soccer and Flowers datasets

by adding the HMAX, HMean and CQ-HMAX to the SODO-HMAX model

and showed that the use of CQ-HMAX, which is a high-level color model

to SODO-HMAX, results in better classification results which supports

the use of color in both high and low levels of image processing. CQ-

HMAX model is significantly faster than SOD-HMAX model as it does

not need the Gabor or Gaussian filter convolution on the image pyramid

and can be used in real-time applications. Using this combination (CQ-

HMAX, HMAX, HMean and SODO-HMAX), we reached classification per-

formances of about 93.3% on Soccer dataset and 90.1% on Flowers dataset
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which are better than the state-of-the-art performances of all bottom-up

computer vision and biologically inspired approaches and reached 86.5%

classification accuracy on Scenes dataset (with the combination of CQ-

HMAX, HMAX and HMean) which is on par with the classification score

achieved by SODO-HMAX model.

We used our modified version of HMAX and CQ-HMAX on MITOS

dataset for detection of mitosis in histopatholgy images and compared it

with some state-of-the-art SIFT methods and showed that HMAX and

CQ-HMAX models outperformed SIFT based models in this specific ap-

plication. Our proposed model of CQ-HMAX also outperforms the SIFT,

HMAX and SVM methods in classification of benthic marine organisms.

We also proposed a new model for simulating the visual and auditory path-

ways by creating sonar images and feeding them to a HMAX structure in

parallel with visual images.

In this thesis, we provided three main modifications to the HMAX

model including different methods for creation of the dictionary of features,

different pooling methods and encoding occurrence and co-occurrence of

features. We introduced a new biologically inspired color model to image

classification and showed that using these modifications, a higher classifica-

tion accuracy is achieved in several benchmark datasets. We also created

three different datasets for further evaluating our methods. Our modifi-

cations and our new biologically inspired color model can be merged into

many other models and are not bound to HMAX model specifically.
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8.2 Future Works

One possible extension is to use non-redundant features as discrimina-

tive features. In order to find the best features for encoding co-occurrence,

we find the features with the highest frequency in each class regardless

of their occurrence in other classes. One possible extension is to find the

cross category occurrence of features and select the ones which make a

discriminative difference between classes. Evaluating inter-class clustering

to create the dictionary of features in CQ-HMAX model could be another

future direction.

Another prospective extension is to encode co-occurrence of features in

CQ-HMAX model. In this extension, the same approach used for encoding

HMean features will be used and features with a higher occurrence in each

category are found and used for creation of dictionary of co-occurrences.

Another possible extension to weighting features is to use a retinotopic

mapping approach in which the center of each patch is given a higher weight

similar to the projection of an image in the V 1 as can be seen in Figure

8.1. The representation of the central 5 degrees (shaded areas) in the visual

field occupies about 40% of the cortex (LeVay et al., 1985).

One other possible extension could be using Mean pooling in S1-C1

layer. Our HMean model performs mean pooling in S2-C2 layer.

The combination of visual and sonar images can be used in other appli-

cations such as robotics where the range of objects can be detected by the

acoustic information. The advantage that the use of acoustic signals have

over laser used for detection of the range (such as in Kinect), is the differ-
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Figure 8.1: Retonotopic mapping in the fovea. The foveal area is represented by

a relatively larger area in V 1 than the peripharal areas.

ent responses (strengths) we receive when touching different materials. For

instance the response taken from a soft tissue and the response from a hard

object, have different strengths and this can be used to further differenti-

ate objects. Hence this final model will use color, grayscale, and acoustic

information for achieving a better understanding of the environment.

One interesting research area as future work of this thesis, could be eval-

uating combination of CQ-HMAX and SODO-HMAX models from lower

levels.
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