118,149 research outputs found

    An Introduction to Fuzzy Edge Coloring

    Get PDF
    In this paper, a new concept of fuzzy edge coloring is introduced. The fuzzy edge coloring is an assignment of colors to edges of a fuzzy graph G. It is proper if no two strong adjacent edges of G will receive the same color. Fuzzy edge chromatic number of G is least positive integer for which G has a proper fuzzy edge coloring. In this paper, the fuzzy edge chromatic number of different classes of fuzzy graphs and the fuzzy edge chromatic number of fuzzy line graphs are found. Isochromatic fuzzy graph is also defined

    A decoupled local memory allocator

    Get PDF
    Compilers use software-controlled local memories to provide fast, predictable, and power-efficient access to critical data. We show that the local memory allocation for straight-line, or linearized programs is equivalent to a weighted interval-graph coloring problem. This problem is new when allowing a color interval to "wrap around," and we call it the submarine-building problem. This graph-theoretical decision problem differs slightly from the classical ship-building problem, and exhibits very interesting and unusual complexity properties. We demonstrate that the submarine-building problem is NP-complete, while it is solvable in linear time for not-so-proper interval graphs, an extension of the the class of proper interval graphs. We propose a clustering heuristic to approximate any interval graph into a not-so-proper interval graph, decoupling spill code generation from local memory assignment. We apply this heuristic to a large number of randomly generated interval graphs reproducing the statistical features of standard local memory allocation benchmarks, comparing with state-of-the-art heuristics. © 2013 ACM
    corecore