23,180 research outputs found

    Modified JSEG algorithm for reducing over-segmentation problems in underwater coral reef images

    Get PDF
    The original JSEG algorithm has proved to be very useful and robust in variety of image segmentation case studies.However, when it is applied into the underwater coral reef images, the original JSEG algorithm produces over-segementation problem, thus making this algorithm futile in such a situation. In this paper, an approach to reduce the over-segmentation problem occurred in the underwater coral reef image segmentation is presented. The approach works by replacing the color histogram computation in region merge stage of the original JSEG algorithm with the new computation of color and texture features in the similarity measurement. Based on the perceptual observation results of the test images, the proposed modified JSEG algorithm could automatically segment the regions better than the original JSEG algorithm

    A Survey on Various Brain MR Image Segmentation Techniques

    Get PDF
    Prior to medical image analysis, segmentation is an essential step in the preprocessing process. Partitioning an image into distinct regions based on characteristics like texture, color, and intensity is its primary goal. Numerous applications include tumor and coronary border recognition, surgical planning, tumor volume measurement, blood cell classification and heart image extraction from cardiac cine angiograms are all made possible by this technique. Many segmentation methods have been proposed recently for medical images. Thresholding, region-based, edge-based, clustering-based and fuzzy based methods are the most important segmentation processes in medical image analysis. A variety of image segmentation methods have been developed by researchers for efficient analysis. An overview of widely used image segmentation methods, along with their benefits and drawbacks, is provided in this paper

    Content-Dependent Image Search System for Aggregation of Color, Shape and Texture Features

    Get PDF
    The existing image search system often faces difficulty to find a appropriate retrieved image corresponding to an image query. The difficulty is commonly caused by that the users’ intention for searching image is different with dominant information of the image collected from feature extraction. In this paper we present a new approach for content-dependent image search system. The system utilizes information of color distribution inside an image and detects a cloud of clustered colors as something - supposed as an object. We applies segmentation of image as content-dependent process before feature extraction in order to identify is there any object or not inside an image. The system extracts 3 features, which are color, shape, and texture features and aggregates these features for similarity measurement between an image query and image database. HSV histogram color is used to extract color feature of image. While the shape feature extraction used Connected Component Labeling (CCL) which is calculated the area value, equivalent diameter, extent, convex hull, solidity, eccentricity, and perimeter of each object. The texture feature extraction used Leung Malik (LM)’s approach with 15 kernels.  For applicability of our proposed system, we applied the system with benchmark 1000 image SIMPLIcity dataset consisting of 10 categories namely Africans, beaches, buildings historians, buses, dinosaurs, elephants, roses, horses, mountains, and food. The experimental results performed 62% accuracy rate to detect objects by color feature, 71% by texture feature, 60% by shape feature, 72% by combined color-texture feature, 67% by combined color-shape feature, 72 % combined texture-shape features and 73% combined all features

    Structured Light-Based 3D Reconstruction System for Plants.

    Get PDF
    Camera-based 3D reconstruction of physical objects is one of the most popular computer vision trends in recent years. Many systems have been built to model different real-world subjects, but there is lack of a completely robust system for plants. This paper presents a full 3D reconstruction system that incorporates both hardware structures (including the proposed structured light system to enhance textures on object surfaces) and software algorithms (including the proposed 3D point cloud registration and plant feature measurement). This paper demonstrates the ability to produce 3D models of whole plants created from multiple pairs of stereo images taken at different viewing angles, without the need to destructively cut away any parts of a plant. The ability to accurately predict phenotyping features, such as the number of leaves, plant height, leaf size and internode distances, is also demonstrated. Experimental results show that, for plants having a range of leaf sizes and a distance between leaves appropriate for the hardware design, the algorithms successfully predict phenotyping features in the target crops, with a recall of 0.97 and a precision of 0.89 for leaf detection and less than a 13-mm error for plant size, leaf size and internode distance

    Visual-hint Boundary to Segment Algorithm for Image Segmentation

    Full text link
    Image segmentation has been a very active research topic in image analysis area. Currently, most of the image segmentation algorithms are designed based on the idea that images are partitioned into a set of regions preserving homogeneous intra-regions and inhomogeneous inter-regions. However, human visual intuition does not always follow this pattern. A new image segmentation method named Visual-Hint Boundary to Segment (VHBS) is introduced, which is more consistent with human perceptions. VHBS abides by two visual hint rules based on human perceptions: (i) the global scale boundaries tend to be the real boundaries of the objects; (ii) two adjacent regions with quite different colors or textures tend to result in the real boundaries between them. It has been demonstrated by experiments that, compared with traditional image segmentation method, VHBS has better performance and also preserves higher computational efficiency.Comment: 45 page

    Segmenting Foreground Objects from a Dynamic Textured Background via a Robust Kalman Filter

    Full text link
    The algorithm presented in this paper aims to segment the foreground objects in video (e.g., people) given time-varying, textured backgrounds. Examples of time-varying backgrounds include waves on water, clouds moving, trees waving in the wind, automobile traffic, moving crowds, escalators, etc. We have developed a novel foreground-background segmentation algorithm that explicitly accounts for the non-stationary nature and clutter-like appearance of many dynamic textures. The dynamic texture is modeled by an Autoregressive Moving Average Model (ARMA). A robust Kalman filter algorithm iteratively estimates the intrinsic appearance of the dynamic texture, as well as the regions of the foreground objects. Preliminary experiments with this method have demonstrated promising results

    A Sub-block Based Image Retrieval Using Modified Integrated Region Matching

    Full text link
    This paper proposes a content based image retrieval (CBIR) system using the local colour and texture features of selected image sub-blocks and global colour and shape features of the image. The image sub-blocks are roughly identified by segmenting the image into partitions of different configuration, finding the edge density in each partition using edge thresholding followed by morphological dilation. The colour and texture features of the identified regions are computed from the histograms of the quantized HSV colour space and Gray Level Co- occurrence Matrix (GLCM) respectively. The colour and texture feature vectors is computed for each region. The shape features are computed from the Edge Histogram Descriptor (EHD). A modified Integrated Region Matching (IRM) algorithm is used for finding the minimum distance between the sub-blocks of the query and target image. Experimental results show that the proposed method provides better retrieving result than retrieval using some of the existing methods.Comment: 7 page

    Multi-Cue Structure Preserving MRF for Unconstrained Video Segmentation

    Full text link
    Video segmentation is a stepping stone to understanding video context. Video segmentation enables one to represent a video by decomposing it into coherent regions which comprise whole or parts of objects. However, the challenge originates from the fact that most of the video segmentation algorithms are based on unsupervised learning due to expensive cost of pixelwise video annotation and intra-class variability within similar unconstrained video classes. We propose a Markov Random Field model for unconstrained video segmentation that relies on tight integration of multiple cues: vertices are defined from contour based superpixels, unary potentials from temporal smooth label likelihood and pairwise potentials from global structure of a video. Multi-cue structure is a breakthrough to extracting coherent object regions for unconstrained videos in absence of supervision. Our experiments on VSB100 dataset show that the proposed model significantly outperforms competing state-of-the-art algorithms. Qualitative analysis illustrates that video segmentation result of the proposed model is consistent with human perception of objects
    • …
    corecore