8,863 research outputs found

    Color models of shadow detection in video scenes

    Get PDF
    In this paper we address the problem of appropriate modelling of shadows in color images. While previous works compared the different approaches regarding their model structure, a comparative study of color models has still missed. This paper attacks a continuous need for defining the appropriate color space for this main surveillance problem. We introduce a statistical and parametric shadow model-framework, which can work with different color spaces, and perform a detailed comparision with it. We show experimental results regarding the following questions: (1) What is the gain of using color images instead of grayscale ones? (2) What is the gain of using uncorrelated spaces instead of the standard RGB? (3) Chrominance (illumination invariant), luminance, or ”mixed” spaces are more effective? (4) In which scenes are the differences significant? We qualified the metrics both in color based clustering of the individual pixels and in the case of Bayesian foreground-background-shadow segmentation. Experimental results on real-life videos show that CIE L*u*v* color space is the most efficient

    A Fusion Framework for Camouflaged Moving Foreground Detection in the Wavelet Domain

    Full text link
    Detecting camouflaged moving foreground objects has been known to be difficult due to the similarity between the foreground objects and the background. Conventional methods cannot distinguish the foreground from background due to the small differences between them and thus suffer from under-detection of the camouflaged foreground objects. In this paper, we present a fusion framework to address this problem in the wavelet domain. We first show that the small differences in the image domain can be highlighted in certain wavelet bands. Then the likelihood of each wavelet coefficient being foreground is estimated by formulating foreground and background models for each wavelet band. The proposed framework effectively aggregates the likelihoods from different wavelet bands based on the characteristics of the wavelet transform. Experimental results demonstrated that the proposed method significantly outperformed existing methods in detecting camouflaged foreground objects. Specifically, the average F-measure for the proposed algorithm was 0.87, compared to 0.71 to 0.8 for the other state-of-the-art methods.Comment: 13 pages, accepted by IEEE TI

    A spatially distributed model for foreground segmentation

    Get PDF
    Foreground segmentation is a fundamental first processing stage for vision systems which monitor real-world activity. In this paper we consider the problem of achieving robust segmentation in scenes where the appearance of the background varies unpredictably over time. Variations may be caused by processes such as moving water, or foliage moved by wind, and typically degrade the performance of standard per-pixel background models. Our proposed approach addresses this problem by modeling homogeneous regions of scene pixels as an adaptive mixture of Gaussians in color and space. Model components are used to represent both the scene background and moving foreground objects. Newly observed pixel values are probabilistically classified, such that the spatial variance of the model components supports correct classification even when the background appearance is significantly distorted. We evaluate our method over several challenging video sequences, and compare our results with both per-pixel and Markov Random Field based models. Our results show the effectiveness of our approach in reducing incorrect classifications

    Interaction between high-level and low-level image analysis for semantic video object extraction

    Get PDF
    Authors of articles published in EURASIP Journal on Advances in Signal Processing are the copyright holders of their articles and have granted to any third party, in advance and in perpetuity, the right to use, reproduce or disseminate the article, according to the SpringerOpen copyright and license agreement (http://www.springeropen.com/authors/license)
    corecore