198 research outputs found

    Compression for Smooth Shape Analysis

    Full text link
    Most 3D shape analysis methods use triangular meshes to discretize both the shape and functions on it as piecewise linear functions. With this representation, shape analysis requires fine meshes to represent smooth shapes and geometric operators like normals, curvatures, or Laplace-Beltrami eigenfunctions at large computational and memory costs. We avoid this bottleneck with a compression technique that represents a smooth shape as subdivision surfaces and exploits the subdivision scheme to parametrize smooth functions on that shape with a few control parameters. This compression does not affect the accuracy of the Laplace-Beltrami operator and its eigenfunctions and allow us to compute shape descriptors and shape matchings at an accuracy comparable to triangular meshes but a fraction of the computational cost. Our framework can also compress surfaces represented by point clouds to do shape analysis of 3D scanning data

    A novel WebVR-Based lightweight framework for virtual visualization of blood vasculum

    Get PDF
    With the arrival of the Web 2.0 era and the rapid development of virtual reality (VR) technology in recent years, WebVR technology has emerged as the combination of Web 2.0 and VR. Moreover, the concept of “WebVR + medical science”is also proposed to advance medical applications. However, due to the limited storage space and low computing capability of Web browsers, it is difficult to achieve real-time rendering of large-scale medical vascular models on the Web, let alone large-scale vascular animation simulations. The framework proposed in this paper can achieve virtual display of the medical blood vasculum, including lightweight processing of the vasculum and virtual realization of blood flow. This innovative framework presents a simulation algorithm for the virtual blood path based on the Catmull-Rom spline. The mechanisms of progressive compression and online recovery of the lightweight vascular structure are further proposed. The experimental results show that our framework has a shorter browser-side response time than existing methods and achieves efficient real-time simulation

    Geometric modeling of non-rigid 3D shapes : theory and application to object recognition.

    Get PDF
    One of the major goals of computer vision is the development of flexible and efficient methods for shape representation. This is true, especially for non-rigid 3D shapes where a great variety of shapes are produced as a result of deformations of a non-rigid object. Modeling these non-rigid shapes is a very challenging problem. Being able to analyze the properties of such shapes and describe their behavior is the key issue in research. Also, considering photometric features can play an important role in many shape analysis applications, such as shape matching and correspondence because it contains rich information about the visual appearance of real objects. This new information (contained in photometric features) and its important applications add another, new dimension to the problem\u27s difficulty. Two main approaches have been adopted in the literature for shape modeling for the matching and retrieval problem, local and global approaches. Local matching is performed between sparse points or regions of the shape, while the global shape approaches similarity is measured among entire models. These methods have an underlying assumption that shapes are rigidly transformed. And Most descriptors proposed so far are confined to shape, that is, they analyze only geometric and/or topological properties of 3D models. A shape descriptor or model should be isometry invariant, scale invariant, be able to capture the fine details of the shape, computationally efficient, and have many other good properties. A shape descriptor or model is needed. This shape descriptor should be: able to deal with the non-rigid shape deformation, able to handle the scale variation problem with less sensitivity to noise, able to match shapes related to the same class even if these shapes have missing parts, and able to encode both the photometric, and geometric information in one descriptor. This dissertation will address the problem of 3D non-rigid shape representation and textured 3D non-rigid shapes based on local features. Two approaches will be proposed for non-rigid shape matching and retrieval based on Heat Kernel (HK), and Scale-Invariant Heat Kernel (SI-HK) and one approach for modeling textured 3D non-rigid shapes based on scale-invariant Weighted Heat Kernel Signature (WHKS). For the first approach, the Laplace-Beltrami eigenfunctions is used to detect a small number of critical points on the shape surface. Then a shape descriptor is formed based on the heat kernels at the detected critical points for different scales. Sparse representation is used to reduce the dimensionality of the calculated descriptor. The proposed descriptor is used for classification via the Collaborative Representation-based Classification with a Regularized Least Square (CRC-RLS) algorithm. The experimental results have shown that the proposed descriptor can achieve state-of-the-art results on two benchmark data sets. For the second approach, an improved method to introduce scale-invariance has been also proposed to avoid noise-sensitive operations in the original transformation method. Then a new 3D shape descriptor is formed based on the histograms of the scale-invariant HK for a number of critical points on the shape at different time scales. A Collaborative Classification (CC) scheme is then employed for object classification. The experimental results have shown that the proposed descriptor can achieve high performance on the two benchmark data sets. An important observation from the experiments is that the proposed approach is more able to handle data under several distortion scenarios (noise, shot-noise, scale, and under missing parts) than the well-known approaches. For modeling textured 3D non-rigid shapes, this dissertation introduces, for the first time, a mathematical framework for the diffusion geometry on textured shapes. This dissertation presents an approach for shape matching and retrieval based on a weighted heat kernel signature. It shows how to include photometric information as a weight over the shape manifold, and it also propose a novel formulation for heat diffusion over weighted manifolds. Then this dissertation presents a new discretization method for the weighted heat kernel induced by the linear FEM weights. Finally, the weighted heat kernel signature is used as a shape descriptor. The proposed descriptor encodes both the photometric, and geometric information based on the solution of one equation. Finally, this dissertation proposes an approach for 3D face recognition based on the front contours of heat propagation over the face surface. The front contours are extracted automatically as heat is propagating starting from a detected set of landmarks. The propagation contours are used to successfully discriminate the various faces. The proposed approach is evaluated on the largest publicly available database of 3D facial images and successfully compared to the state-of-the-art approaches in the literature. This work can be extended to the problem of dense correspondence between non-rigid shapes. The proposed approaches with the properties of the Laplace-Beltrami eigenfunction can be utilized for 3D mesh segmentation. Another possible application of the proposed approach is the view point selection for 3D objects by selecting the most informative views that collectively provide the most descriptive presentation of the surface

    Learning in the Real World: Constraints on Cost, Space, and Privacy

    Get PDF
    The sheer demand for machine learning in fields as varied as: healthcare, web-search ranking, factory automation, collision prediction, spam filtering, and many others, frequently outpaces the intended use-case of machine learning models. In fact, a growing number of companies hire machine learning researchers to rectify this very problem: to tailor and/or design new state-of-the-art models to the setting at hand. However, we can generalize a large set of the machine learning problems encountered in practical settings into three categories: cost, space, and privacy. The first category (cost) considers problems that need to balance the accuracy of a machine learning model with the cost required to evaluate it. These include problems in web-search, where results need to be delivered to a user in under a second and be as accurate as possible. The second category (space) collects problems that require running machine learning algorithms on low-memory computing devices. For instance, in search-and-rescue operations we may opt to use many small unmanned aerial vehicles (UAVs) equipped with machine learning algorithms for object detection to find a desired search target. These algorithms should be small to fit within the physical memory limits of the UAV (and be energy efficient) while reliably detecting objects. The third category (privacy) considers problems where one wishes to run machine learning algorithms on sensitive data. It has been shown that seemingly innocuous analyses on such data can be exploited to reveal data individuals would prefer to keep private. Thus, nearly any algorithm that runs on patient or economic data falls under this set of problems. We devise solutions for each of these problem categories including (i) a fast tree-based model for explicitly trading off accuracy and model evaluation time, (ii) a compression method for the k-nearest neighbor classifier, and (iii) a private causal inference algorithm that protects sensitive data

    Developments in fractal geometry

    Get PDF

    Curvature corrected tangent space-based approximation of manifold-valued data

    Full text link
    When generalizing schemes for real-valued data approximation or decomposition to data living in Riemannian manifolds, tangent space-based schemes are very attractive for the simple reason that these spaces are linear. An open challenge is to do this in such a way that the generalized scheme is applicable to general Riemannian manifolds, is global-geometry aware and is computationally feasible. Existing schemes have been unable to account for all three of these key factors at the same time. In this work, we take a systematic approach to developing a framework that is able to account for all three factors. First, we will restrict ourselves to the -- still general -- class of symmetric Riemannian manifolds and show how curvature affects general manifold-valued tensor approximation schemes. Next, we show how the latter observations can be used in a general strategy for developing approximation schemes that are also global-geometry aware. Finally, having general applicability and global-geometry awareness taken into account we restrict ourselves once more in a case study on low-rank approximation. Here we show how computational feasibility can be achieved and propose the curvature-corrected truncated higher-order singular value decomposition (CC-tHOSVD), whose performance is subsequently tested in numerical experiments with both synthetic and real data living in symmetric Riemannian manifolds with both positive and negative curvature
    corecore