7 research outputs found

    Color Filter Array Demosaicking Using High-Order Interpolation Techniques With a Weighted Median Filter for Sharp Color Edge Preservation

    Get PDF
    Demosaicking is an estimation process to determine missing color values when a single-sensor digital camera is used for color image capture. In this paper, we propose a number of new methods based on the application of Taylor series and cubic spline interpolation for color filter array demosaicking. To avoid the blurring of an edge, interpolants are first estimated in four opposite directions so that no interpolation is carried out across an edge. A weighted median filter, whose filter coefficients are determined by a classifier based on an edge orientation map, is then used to produce an output from the four interpolants to preserve edges. Using the proposed methods, the original color can be faithfully reproduced with minimal amount of color artifacts even at edges

    Adaptive order-statistics multi-shell filtering for bad pixel correction within CFA demosaicking

    Get PDF
    As today's digital cameras contain millions of image sensors, it is highly probable that the image sensors will contain a few defective pixels due to errors in the fabrication process. While these bad pixels would normally be mapped out in the manufacturing process, more defective pixels, known as hot pixels, could appear over time with camera usage. Since some hot pixels can still function at normal settings, they need not be permanently mapped out because they will only appear on a long exposure and/or at high ISO settings. In this paper, we apply an adaptive order-statistics multi-shell filter within CFA demosaicking to filter out only bad pixels whilst preserving the rest of the image. The CFA image containing bad pixels is first demosaicked to produce a full colour image. The adaptive filter is then only applied to the actual sensor pixels within the colour image for bad pixel correction. Demosaicking is then re-applied at those bad pixel locations to produce the final full colour image free of defective pixels. It has been shown that our proposed method outperforms a separate process of CFA demosaicking followed by bad pixel removal

    Universal Demosaicking of Color Filter Arrays

    Get PDF
    A large number of color filter arrays (CFAs), periodic or aperiodic, have been proposed. To reconstruct images from all different CFAs and compare their imaging quality, a universal demosaicking method is needed. This paper proposes a new universal demosaicking method based on inter-pixel chrominance capture and optimal demosaicking transformation. It skips the commonly used step to estimate the luminance component at each pixel, and thus, avoids the associated estimation error. Instead, we directly use the acquired CFA color intensity at each pixel as an input component. Two independent chrominance components are estimated at each pixel based on the interpixel chrominance in the window, which is captured with the difference of CFA color values between the pixel of interest and its neighbors. Two mechanisms are employed for the accurate estimation: distance-related and edge-sensing weighting to reflect the confidence levels of the inter-pixel chrominance components, and pseudoinverse-based estimation from the components in a window. Then from the acquired CFA color component and two estimated chrominance components, the three primary colors are reconstructed by a linear color transform, which is optimized for the least transform error. Our experiments show that the proposed method is much better than other published universal demosaicking methods.National Key Basic Research Project of China (973 Program) [2015CB352303, 2011CB302400]; National Natural Science Foundation (NSF) of China [61071156, 61671027]SCI(E)[email protected]; [email protected]; [email protected]; [email protected]

    Análisis multidimensional de imágenes digitales

    Get PDF
    El análisis de imágenes se define como la ciencia de extracción cuantitativa de datos (numéricos, geométricos, densitométricos y espectrométricos) a partir de las mismas. Desde tiempos inmemorables el hombre ha tratado de clasificar elementos y registrar variaciones para comprender fenómenos físicos, químicos o biológicos. En particular, la biología se ha basado en la medición de las formas de los organismos y sus células para comprender los fenómenos evolutivos. Hoy en día, la morfometría nos permite establecer normas que sirven para comprender los cambios fisiológicos o patológicos observados en estas estructuras. La histología y la citología dependen del reconocimiento de las formas, donde la apreciación visual directa resulta de suma utilidad. Sin embargo, cuando debe analizarse la celularidad de un tejido o su intensidad de tinción, la observación directa carece de poder de discriminación. La histometría, en cambio, permite establecer características morfológicas de las células tales como área, perímetro, redondez, entre otras, así como determinar valores volumétricos y caracterizar parámetros de movimiento, como velocidad, dirección, aceleración de desplazamiento de células vivas o sus estructuras. Más aún, con el advenimiento de sistemas microscópicos confocales o de súper-resolución, la capacidad de medición de las estructuras resulta cada vez más precisa. En la actualidad existe una gran variedad de aplicaciones del análisis de imágenes en el campo de la medicina y la biología. El análisis de imágenes es una herramienta fundamental para dar valor agregado a las investigaciones que se realizan a nivel ultraestructural, microscópico y macroscópico, dentro de áreas tan dispersas como biología, geología, física, electrónica, etc.Facultad de Ciencias Veterinaria

    Análisis multidimensional de imágenes digitales

    Get PDF
    El análisis de imágenes se define como la ciencia de extracción cuantitativa de datos (numéricos, geométricos, densitométricos y espectrométricos) a partir de las mismas. Desde tiempos inmemorables el hombre ha tratado de clasificar elementos y registrar variaciones para comprender fenómenos físicos, químicos o biológicos. En particular, la biología se ha basado en la medición de las formas de los organismos y sus células para comprender los fenómenos evolutivos. Hoy en día, la morfometría nos permite establecer normas que sirven para comprender los cambios fisiológicos o patológicos observados en estas estructuras. La histología y la citología dependen del reconocimiento de las formas, donde la apreciación visual directa resulta de suma utilidad. Sin embargo, cuando debe analizarse la celularidad de un tejido o su intensidad de tinción, la observación directa carece de poder de discriminación. La histometría, en cambio, permite establecer características morfológicas de las células tales como área, perímetro, redondez, entre otras, así como determinar valores volumétricos y caracterizar parámetros de movimiento, como velocidad, dirección, aceleración de desplazamiento de células vivas o sus estructuras. Más aún, con el advenimiento de sistemas  microscópicos confocales o de súper-resolución, la capacidad de medición de las estructuras resulta cada vez más precisa. En la actualidad existe una gran variedad de aplicaciones del análisis de imágenes en el campo de la medicina y la biología. Este libro no pretende ser un compendio de información tecnológica sobre el conocimiento actual del análisis de imágenes, sino un texto dinámico, dirigido a todas aquellas personas que quieran iniciarse en este fascinante mundo imaginario. En este sentido, se sugiere al lector no leerlo como un libro de texto sino, en lo posible, tratar de encontrar en cada uno de sus párrafos sus propios ejemplos y aplicarlos en cualquier sistema microscópico o analizador de imágenes a su disposición.Fil: Portiansky, Enrique Leo. Universidad Nacional de La Plata. Facultad de Ciencias Veterinarias. Cátedra de Patología General Veterinaria; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentin

    Análisis multidimensional de imágenes digitales

    Get PDF
    El análisis de imágenes se define como la ciencia de extracción cuantitativa de datos (numéricos, geométricos, densitométricos y espectrométricos) a partir de las mismas. Desde tiempos inmemorables el hombre ha tratado de clasificar elementos y registrar variaciones para comprender fenómenos físicos, químicos o biológicos. En particular, la biología se ha basado en la medición de las formas de los organismos y sus células para comprender los fenómenos evolutivos. Hoy en día, la morfometría nos permite establecer normas que sirven para comprender los cambios fisiológicos o patológicos observados en estas estructuras. La histología y la citología dependen del reconocimiento de las formas, donde la apreciación visual directa resulta de suma utilidad. Sin embargo, cuando debe analizarse la celularidad de un tejido o su intensidad de tinción, la observación directa carece de poder de discriminación. La histometría, en cambio, permite establecer características morfológicas de las células tales como área, perímetro, redondez, entre otras, así como determinar valores volumétricos y caracterizar parámetros de movimiento, como velocidad, dirección, aceleración de desplazamiento de células vivas o sus estructuras. Más aún, con el advenimiento de sistemas microscópicos confocales o de súper-resolución, la capacidad de medición de las estructuras resulta cada vez más precisa. En la actualidad existe una gran variedad de aplicaciones del análisis de imágenes en el campo de la medicina y la biología. El análisis de imágenes es una herramienta fundamental para dar valor agregado a las investigaciones que se realizan a nivel ultraestructural, microscópico y macroscópico, dentro de áreas tan dispersas como biología, geología, física, electrónica, etc.Facultad de Ciencias Veterinaria
    corecore