378,377 research outputs found

    Visual Aftereffect Of Texture Density Contingent On Color Of Frame

    Get PDF
    An aftereffect of perceived texture density contingent on the color of a surrounding region is reported. In a series of experiments, participants were adapted, with fixation, to stimuli in which the relative density of two achromatic texture regions was perfectly correlated with the color presented in a surrounding region. Following adaptation, the perceived relative density of the two regions was contingent on the color of the surrounding region or of the texture elements themselves. For example, if high density on the left was correlated with a blue surround during adaptation (and high density on the right with a yellow surround), then in order for the left and right textures to appear equal in the assessment phase, denser texture was required on the left in the presence of a blue surround (and denser texture on the right in the context of a yellow surround). Contingent aftereffects were found (1) with black-and-white scatter-dot textures, (2) with luminance-balanced textures, and (3) when the texture elements, rather than the surrounds, were colored during assessment. Effect size was decreased when the elements themselves were colored, but also when spatial subportions of the surround were used for the presentation of color. The effect may be mediated by retinal color spreading (Pöppel, 1986) and appears consistent with a local associative account of contingent aftereffects, such as Barlow\u27s (1990) model of modifiable inhibition

    Color responses and their adaptation in human superior colliculus and lateral geniculate nucleus

    Get PDF
    We use an fMRI adaptation paradigm to explore the selectivity of human responses in the lateral geniculate nucleus (LGN) and superior colliculus (SC) to red–green color and achromatic contrast.We measured responses to red–green (RG) and achromatic (ACH) high contrast sinewave counter-phasing rings with and without adaptation, within a block design. The signal for the RG test stimulus was reduced following both RG and ACH adaptation, whereas the signal for the ACH test was unaffected by either adaptor. These results provide compelling evidence that the human LGN and SC have significant capacity for color adaptation. Since in the LGN red–green responses are mediated by P cells, these findings are in contrast to earlier neurophysiological data from non-human primates that have shown weak or no contrast adaptation in the P pathway. Cross-adaptation of the red–green color response by achromatic contrast suggests unselective response adaptation and points to a dual role for P cells in responding to both color and achromatic contrast. We further show that subcortical adaptation is not restricted to the geniculostriate system, but is also present in the superior colliculus (SC), an oculomotor region that until recently, has been thought to be color-blind. Our data show that the human SC not only responds to red–green color contrast, but like the LGN, shows reliable but unselective adaptation.published_or_final_versio

    A snake of a different color: physiological color change in Arizona black rattlesnakes

    Get PDF
    Coloration may serve a variety of behavioral (e.g., crypsis, communication) and physiological (e.g., thermoregulation, protection) functions for terrestrial ectotherms. However, optimal coloration for a given function may vary over environments (spatial or temporal) or conflict with other functions. Physiological color change (rapid change due to movement of pigment granules within chromatophores) may be an adaptation to resolve conflicting selective pressures on coloration. The proximate factors related to physiological color change are well known in many animals, but few studies have investigated the ecological or evolutionary implications of this behavior. Here, we present alternative hypotheses for physiological color change and discuss biotic and abiotic factors that may have led to the maintenance and/or loss of this behavior among populations of Arizona black rattlesnakes (_Crotalus cerberus_). We discuss what is known about this behavior and propose to investigate the function and evolution of coloration and color change in _C. cerberus_

    Peripheral visual response time to colored stimuli imaged on the horizontal meridian

    Get PDF
    Two male observers were administered a binocular visual response time task to small (45 min arc), flashed, photopic stimuli at four dominant wavelengths (632 nm red; 583 nm yellow; 526 nm green; 464 nm blue) imaged across the horizontal retinal meridian. The stimuli were imaged at 10 deg arc intervals from 80 deg left to 90 deg right of fixation. Testing followed either prior light adaptation or prior dark adaptation. Results indicated that mean response time (RT) varies with stimulus color. RT is faster to yellow than to blue and green and slowest to red. In general, mean RT was found to increase from fovea to periphery for all four colors, with the curve for red stimuli exhibiting the most rapid positive acceleration with increasing angular eccentricity from the fovea. The shape of the RT distribution across the retina was also found to depend upon the state of light or dark adaptation. The findings are related to previous RT research and are discussed in terms of optimizing the color and position of colored displays on instrument panels

    Gluon-Meson Duality in the Mean Field Approximation

    Get PDF
    In a gauge-fixed language gluon-meson duality can be described as the Higgs mechanism for ``spontaneous symmetry breaking'' of color. We present a mean field computation which suggests that this phenomenon is plausible in QCD. One obtains realistic masses of the light mesons and baryons.Comment: 12 pages,adaptation of numerical results to hep-ph/000815

    Color afterimages in autistic adults

    Get PDF
    It has been suggested that attenuated adaptation to visual stimuli in autism is the result of atypical perceptual priors (e.g., Pellicano and Burr in Trends Cogn Sci 16(10):504–510, 2012. doi:10.​1016/​j.​tics.​2012.​08.​009). This study investigated adaptation to color in autistic adults, measuring both strength of afterimage and the influence of top-down knowledge. We found no difference in color afterimage strength between autistic and typical adults. Effects of top-down knowledge on afterimage intensity shown by Lupyan (Acta Psychol 161:117–130, 2015. doi:10.​1016/​j.​actpsy.​2015.​08.​006) were not replicated for either group. This study finds intact color adaptation in autistic adults. This is in contrast to findings of attenuated adaptation to faces and numerosity in autistic children. Future research should investigate the possibility of developmental differences in adaptation and further examine top-down effects on adaptation

    Visual Learning In The Perception Of Texture: Simple And Contingent Aftereffects Of Texture Density

    Get PDF
    Novel results elucidating the magnitude, binocularity and retinotopicity of aftereffects of visual texture density adaptation are reported as is a new contingent aftereffect of texture density which suggests that the perception of visual texture density is quite malleable. Texture aftereffects contingent upon orientation, color and temporal sequence are discussed. A fourth effect is demonstrated in which auditory contingencies are shown to produce a different kind of visual distortion. The merits and limitations of error-correction and classical conditioning theories of contingent adaptation are reviewed. It is argued that a third kind of theory which emphasizes coding efficiency and informational considerations merits close attention. It is proposed that malleability in the registration of texture information can be understood as part of the functional adaptability of perception
    • …
    corecore