22 research outputs found

    Nonlocal Graph-PDEs and Riemannian Gradient Flows for Image Labeling

    Get PDF
    In this thesis, we focus on the image labeling problem which is the task of performing unique pixel-wise label decisions to simplify the image while reducing its redundant information. We build upon a recently introduced geometric approach for data labeling by assignment flows [ APSS17 ] that comprises a smooth dynamical system for data processing on weighted graphs. Hereby we pursue two lines of research that give new application and theoretically-oriented insights on the underlying segmentation task. We demonstrate using the example of Optical Coherence Tomography (OCT), which is the mostly used non-invasive acquisition method of large volumetric scans of human retinal tis- sues, how incorporation of constraints on the geometry of statistical manifold results in a novel purely data driven geometric approach for order-constrained segmentation of volumetric data in any metric space. In particular, making diagnostic analysis for human eye diseases requires decisive information in form of exact measurement of retinal layer thicknesses that has be done for each patient separately resulting in an demanding and time consuming task. To ease the clinical diagnosis we will introduce a fully automated segmentation algorithm that comes up with a high segmentation accuracy and a high level of built-in-parallelism. As opposed to many established retinal layer segmentation methods, we use only local information as input without incorporation of additional global shape priors. Instead, we achieve physiological order of reti- nal cell layers and membranes including a new formulation of ordered pair of distributions in an smoothed energy term. This systematically avoids bias pertaining to global shape and is hence suited for the detection of anatomical changes of retinal tissue structure. To access the perfor- mance of our approach we compare two different choices of features on a data set of manually annotated 3 D OCT volumes of healthy human retina and evaluate our method against state of the art in automatic retinal layer segmentation as well as to manually annotated ground truth data using different metrics. We generalize the recent work [ SS21 ] on a variational perspective on assignment flows and introduce a novel nonlocal partial difference equation (G-PDE) for labeling metric data on graphs. The G-PDE is derived as nonlocal reparametrization of the assignment flow approach that was introduced in J. Math. Imaging & Vision 58(2), 2017. Due to this parameterization, solving the G-PDE numerically is shown to be equivalent to computing the Riemannian gradient flow with re- spect to a nonconvex potential. We devise an entropy-regularized difference-of-convex-functions (DC) decomposition of this potential and show that the basic geometric Euler scheme for inte- grating the assignment flow is equivalent to solving the G-PDE by an established DC program- ming scheme. Moreover, the viewpoint of geometric integration reveals a basic way to exploit higher-order information of the vector field that drives the assignment flow, in order to devise a novel accelerated DC programming scheme. A detailed convergence analysis of both numerical schemes is provided and illustrated by numerical experiments

    Proceedings of the Third International Workshop on Mathematical Foundations of Computational Anatomy - Geometrical and Statistical Methods for Modelling Biological Shape Variability

    Get PDF
    International audienceComputational anatomy is an emerging discipline at the interface of geometry, statistics and image analysis which aims at modeling and analyzing the biological shape of tissues and organs. The goal is to estimate representative organ anatomies across diseases, populations, species or ages, to model the organ development across time (growth or aging), to establish their variability, and to correlate this variability information with other functional, genetic or structural information. The Mathematical Foundations of Computational Anatomy (MFCA) workshop aims at fostering the interactions between the mathematical community around shapes and the MICCAI community in view of computational anatomy applications. It targets more particularly researchers investigating the combination of statistical and geometrical aspects in the modeling of the variability of biological shapes. The workshop is a forum for the exchange of the theoretical ideas and aims at being a source of inspiration for new methodological developments in computational anatomy. A special emphasis is put on theoretical developments, applications and results being welcomed as illustrations. Following the successful rst edition of this workshop in 20061 and second edition in New-York in 20082, the third edition was held in Toronto on September 22 20113. Contributions were solicited in Riemannian and group theoretical methods, geometric measurements of the anatomy, advanced statistics on deformations and shapes, metrics for computational anatomy, statistics of surfaces, modeling of growth and longitudinal shape changes. 22 submissions were reviewed by three members of the program committee. To guaranty a high level program, 11 papers only were selected for oral presentation in 4 sessions. Two of these sessions regroups classical themes of the workshop: statistics on manifolds and diff eomorphisms for surface or longitudinal registration. One session gathers papers exploring new mathematical structures beyond Riemannian geometry while the last oral session deals with the emerging theme of statistics on graphs and trees. Finally, a poster session of 5 papers addresses more application oriented works on computational anatomy

    Registration of prone and supine CT colonography images and its clinical application

    Get PDF
    Computed tomographic (CT) colonography is a technique for detecting bowel cancer and potentially precancerous polyps. CT imaging is performed on the cleansed and insufflated bowel in order to produce a virtual endoluminal representation similar to optical colonoscopy. Because fluids and stool can mimic pathology, images are acquired with the patient in both prone and supine positions. Radiologists then match endoluminal locations visually between the two acquisitions in order to determine whether pathology is real or not. This process is hindered by the fact that the colon can undergo considerable deformation between acquisitions. Robust and accurate automated registration between prone and supine data acquisitions is therefore pivotal for medical interpretation, but a challenging problem. The method proposed in this thesis reduces the complexity of the registration task of aligning the prone and supine CT colonography acquisitions. This is done by utilising cylindrical representations of the colonic surface which reflect the colon's specific anatomy. Automated alignment in the cylindrical domain is achieved by non-rigid image registration using surface curvatures, applicable even when cases exhibit local luminal collapses. It is furthermore shown that landmark matches for initialisation improve the registration's accuracy and robustness. Additional performance improvements are achieved by symmetric and inverse-consistent registration and iteratively deforming the surface in order to compensate for differences in distension and bowel preparation. Manually identified reference points in human data and fiducial markers in a porcine phantom are used to validate the registration accuracy. The potential clinical impact of the method has been evaluated using data that reflects clinical practise. Furthermore, correspondence between follow-up CT colonography acquisitions is established in order to facilitate the clinical need to investigate polyp growth over time. Accurate registration has the potential to both improve the diagnostic process and decrease the radiologist's interpretation time. Furthermore, its result could be integrated into algorithms for improved computer-aided detection of colonic polyps

    Visual Exploration And Information Analytics Of High-Dimensional Medical Images

    Get PDF
    Data visualization has transformed how we analyze increasingly large and complex data sets. Advanced visual tools logically represent data in a way that communicates the most important information inherent within it and culminate the analysis with an insightful conclusion. Automated analysis disciplines - such as data mining, machine learning, and statistics - have traditionally been the most dominant fields for data analysis. It has been complemented with a near-ubiquitous adoption of specialized hardware and software environments that handle the storage, retrieval, and pre- and postprocessing of digital data. The addition of interactive visualization tools allows an active human participant in the model creation process. The advantage is a data-driven approach where the constraints and assumptions of the model can be explored and chosen based on human insight and confirmed on demand by the analytic system. This translates to a better understanding of data and a more effective knowledge discovery. This trend has become very popular across various domains, not limited to machine learning, simulation, computer vision, genetics, stock market, data mining, and geography. In this dissertation, we highlight the role of visualization within the context of medical image analysis in the field of neuroimaging. The analysis of brain images has uncovered amazing traits about its underlying dynamics. Multiple image modalities capture qualitatively different internal brain mechanisms and abstract it within the information space of that modality. Computational studies based on these modalities help correlate the high-level brain function measurements with abnormal human behavior. These functional maps are easily projected in the physical space through accurate 3-D brain reconstructions and visualized in excellent detail from different anatomical vantage points. Statistical models built for comparative analysis across subject groups test for significant variance within the features and localize abnormal behaviors contextualizing the high-level brain activity. Currently, the task of identifying the features is based on empirical evidence, and preparing data for testing is time-consuming. Correlations among features are usually ignored due to lack of insight. With a multitude of features available and with new emerging modalities appearing, the process of identifying the salient features and their interdependencies becomes more difficult to perceive. This limits the analysis only to certain discernible features, thus limiting human judgments regarding the most important process that governs the symptom and hinders prediction. These shortcomings can be addressed using an analytical system that leverages data-driven techniques for guiding the user toward discovering relevant hypotheses. The research contributions within this dissertation encompass multidisciplinary fields of study not limited to geometry processing, computer vision, and 3-D visualization. However, the principal achievement of this research is the design and development of an interactive system for multimodality integration of medical images. The research proceeds in various stages, which are important to reach the desired goal. The different stages are briefly described as follows: First, we develop a rigorous geometry computation framework for brain surface matching. The brain is a highly convoluted structure of closed topology. Surface parameterization explicitly captures the non-Euclidean geometry of the cortical surface and helps derive a more accurate registration of brain surfaces. We describe a technique based on conformal parameterization that creates a bijective mapping to the canonical domain, where surface operations can be performed with improved efficiency and feasibility. Subdividing the brain into a finite set of anatomical elements provides the structural basis for a categorical division of anatomical view points and a spatial context for statistical analysis. We present statistically significant results of our analysis into functional and morphological features for a variety of brain disorders. Second, we design and develop an intelligent and interactive system for visual analysis of brain disorders by utilizing the complete feature space across all modalities. Each subdivided anatomical unit is specialized by a vector of features that overlap within that element. The analytical framework provides the necessary interactivity for exploration of salient features and discovering relevant hypotheses. It provides visualization tools for confirming model results and an easy-to-use interface for manipulating parameters for feature selection and filtering. It provides coordinated display views for visualizing multiple features across multiple subject groups, visual representations for highlighting interdependencies and correlations between features, and an efficient data-management solution for maintaining provenance and issuing formal data queries to the back end

    Feature extraction to aid disease detection and assessment of disease progression in CT and MR colonography

    Get PDF
    Computed tomographic colonography (CTC) is a technique employed to examine the whole colon for cancers and premalignant adenomas (polyps). Oral preparation is taken to fully cleanse the colon, and gas insufflation maximises the attenuation contrast between the enoluminal colon surface and the lumen. The procedure is performed routinely with the patient both prone and supine to redistribute gas and residue. This helps to differentiate fixed colonic pathology from mobile faecal residue and also helps discover pathology occluded by retained fluid or luminal collapse. Matching corresponding endoluminal surface locations with the patient in the prone and supine positions is therefore an essential aspect of interpretation by radiologists; however, interpretation can be difficult and time consuming due to the considerable colonic deformations that occur during repositioning. Hence, a method for automated registration has the potential to improve efficiency and diagnostic accuracy. I propose a novel method to establish correspondence between prone and supine CT colonography acquisitions automatically. The problem is first simplified by detecting haustral folds which are elongated ridgelike endoluminal structures and can be identified by curvature based measurements. These are subsequently matched using appearance based features, and their relative geometric relationships. It is shown that these matches can be used to find correspondence along the full length of the colon, but may also be used in conjunction with other registration methods to achieve a more robust and accurate result, explicitly addressing the problem of colonic collapse. The potential clinical value of this method has been assessed in an external clinical validation, and the application to follow-up CTC surveillance has been investigated. MRI has recently been applied as a tool to quantitatively evaluate the therapeutic response to therapy in patients with Crohn's disease, and is the preferred choice for repeated imaging. A primary biomarker for this evaluation is the measurement of variations of bowel wall thickness on changing from the active phase of the disease to remission; however, a poor level of interobserver agreement of measured thickness is reported and therefore a system for accurate, robust and reproducible measurements is desirable. I propose a novel method which will automatically track sections of colon, by estimating the positions of elliptical cross sections. Subsequently, estimation of the positions of the inner and outer bowel walls are made based on image gradient information and therefore a thickness measurement value can be extracted

    Visual analytics methods for shape analysis of biomedical images exemplified on rodent skull morphology

    Get PDF
    In morphometrics and its application fields like medicine and biology experts are interested in causal relations of variation in organismic shape to phylogenetic, ecological, geographical, epidemiological or disease factors - or put more succinctly by Fred L. Bookstein, morphometrics is "the study of covariances of biological form". In order to reveal causes for shape variability, targeted statistical analysis correlating shape features against external and internal factors is necessary but due to the complexity of the problem often not feasible in an automated way. Therefore, a visual analytics approach is proposed in this thesis that couples interactive visualizations with automated statistical analyses in order to stimulate generation and qualitative assessment of hypotheses on relevant shape features and their potentially affecting factors. To this end long established morphometric techniques are combined with recent shape modeling approaches from geometry processing and medical imaging, leading to novel visual analytics methods for shape analysis. When used in concert these methods facilitate targeted analysis of characteristic shape differences between groups, co-variation between different structures on the same anatomy and correlation of shape to extrinsic attributes. Here a special focus is put on accurate modeling and interactive rendering of image deformations at high spatial resolution, because that allows for faithful representation and communication of diminutive shape features, large shape differences and volumetric structures. The utility of the presented methods is demonstrated in case studies conducted together with a collaborating morphometrics expert. As exemplary model structure serves the rodent skull and its mandible that are assessed via computed tomography scans
    corecore