5 research outputs found

    Formation Control Algorithms With Limited or No Communication

    Get PDF
    Formation control refers to a collective behaviour of multi-agent systems where individual agents come together to form a pattern, often geometric. These formations can enable multi-agent systems to function more effectively in a broad range of applications. Many formation control algorithms require centralized decision making, communication between agents or a centralized decision maker and other factors that increase per-agent cost and reduce the robustness and scalability of multi-agent systems. To this end, we introduce two algorithms that operate using local decision making and limited or no communication. The first algorithm is a communication-free and index-free algorithm based on polar indicator distributions. The second is a progressive assignment algorithm using limited, situated communication that deterministically assigns agents a position in the objective formation along a convex spiral directed path graph. We also present an extension of the second algorithm for 3-dimensional formation definitions. The first algorithm is demonstrated in a physical experiment using ground-based agents while the second one is simulated using micro air vehicles (MAVs) in a physics-based simulator

    Robust Distributed Formation Control of UAVs with Higher-Order Dynamics

    Get PDF
    In this thesis, we introduce distributed formation control strategies to reach an intended linear formation for agents with a diverse array of dynamics. The suggested technique is distributed entirely, does not include inter-agent cooperation or a barrier of orientation, and can be applied using relative location information gained by agents in their local cooperation frames. We illustrate how the control optimized for agents with the simpler dynamic model, i.e., the dynamics of the single integrator, can be expanded to holonomic agents with higher dynamics such as quadrotors and non-holonomic agents such as unicycles and cars. Our suggested approach makes feedback saturations, unmodelled dynamics, and switches stable in the sensing topology. We also indicate that the control is relaxed as agents will travel along with a rotated and scaled control direction without disrupting the convergence to the desired formation. We can implement this observation to design a distributed strategy for preventing collisions. In simulations, we explain the suggested solution and further introduce a distributed robotic framework to experimentally validate the technique. Our experimental platform is made up of off-the-shelf devices that can be used to evaluate other multi-agent algorithms and verify them
    corecore