6 research outputs found

    Collision avoidance for persistent monitoring in multi-robot systems with intersecting trajectories

    Get PDF
    Persistent robot tasks such as monitoring and cleaning are concerned with controlling mobile robots to act in a changing environment in a way that guarantees that the uncertainty in the system (due to change and to the actions of the robot) remains bounded for all time. Prior work in persistent robot tasks considered only robot systems with collision-free paths that move following speed controllers. In this paper we describe a solution to multi-robot persistent monitoring, where robots have intersecting trajectories. We develop collision and deadlock avoidance algorithms that are based on stopping policies, and quantify the impact of the stopping times on the overall stability of the speed controllers.United States. Office of Naval Research. Multidisciplinary University Research Initiative (Award N00014-09-1-1051)National Science Foundation (U.S.). Graduate Research Fellowship Program (Award 0645960)Boeing Compan

    Collision avoidance for persistent monitoring in multi-robot systems with intersecting trajectories

    Full text link

    Coordination of Multirobot Systems Under Temporal Constraints

    Full text link
    Multirobot systems have great potential to change our lives by increasing efficiency or decreasing costs in many applications, ranging from warehouse logistics to construction. They can also replace humans in dangerous scenarios, for example in a nuclear disaster cleanup mission. However, teleoperating robots in these scenarios would severely limit their capabilities due to communication and reaction delays. Furthermore, ensuring that the overall behavior of the system is safe and correct for a large number of robots is challenging without a principled solution approach. Ideally, multirobot systems should be able to plan and execute autonomously. Moreover, these systems should be robust to certain external factors, such as failing robots and synchronization errors and be able to scale to large numbers, as the effectiveness of particular tasks might depend directly on these criteria. This thesis introduces methods to achieve safe and correct autonomous behavior for multirobot systems. Firstly, we introduce a novel logic family, called counting logics, to describe the high-level behavior of multirobot systems. Counting logics capture constraints that arise naturally in many applications where the identity of the robot is not important for the task to be completed. We further introduce a notion of robust satisfaction to analyze the effects of synchronization errors on the overall behavior and provide complexity analysis for a fragment of this logic. Secondly, we propose an optimization-based algorithm to generate a collection of robot paths to satisfy the specifications given in counting logics. We assume that the robots are perfectly synchronized and use a mixed-integer linear programming formulation to take advantage of the recent advances in this field. We show that this approach is complete under the perfect synchronization assumption. Furthermore, we propose alternative encodings that render more efficient solutions under certain conditions. We also provide numerical results that showcase the scalability of our approach, showing that it scales to hundreds of robots. Thirdly, we relax the perfect synchronization assumption and show how to generate paths that are robust to bounded synchronization errors, without requiring run-time communication. However, the complexity of such an approach is shown to depend on the error bound, which might be limiting. To overcome this issue, we propose a hierarchical method whose complexity does not depend on this bound. We show that, under mild conditions, solutions generated by the hierarchical method can be executed safely, even if such a bound is not known. Finally, we propose a distributed algorithm to execute multirobot paths while avoiding collisions and deadlocks that might occur due to synchronization errors. We recast this problem as a conflict resolution problem and characterize conditions under which existing solutions to the well-known drinking philosophers problem can be used to design control policies that prevents collisions and deadlocks. We further provide improvements to this naive approach to increase the amount of concurrency in the system. We demonstrate the effectiveness of our approach by comparing it to the naive approach and to the state-of-the-art.PHDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/162921/1/ysahin_1.pd

    Generating informative paths for persistent sensing in unknown environments

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 127-130).In this thesis, we present an adaptive control law for a team of robots to shape their paths to locally optimal configurations for sensing an unknown dynamical environment. As the robots travels through their paths, they identify the areas where the environment is dynamic and shape their paths to sense these areas. A Lyapunov-like stability proof is used to show that, under the proposed adaptive control law, the paths converge to locally optimal configurations according to a Voronoi-based coverage task, i.e. informative paths. The problem is first treated for a single robot and then extended to multiple robots. Additionally, the controllers for both the single-robot and the multi-robot case are extended to treat the problem of generating informative paths for persistent sensing tasks. Persistent sensing tasks are concerned with controlling the trajectories of mobile robots to act in a growing field in the environment in a way that guarantees that the field remains bounded for all time. The extended informative path controllers are proven to shape the paths into informative paths that are useful for performing persistent sensing tasks. Lastly, prior work in persistent sensing tasks only considered robotic systems with collision-free paths. In this thesis we also describe a solution to multi-robot persistent sensing, where robots have intersecting trajectories. We develop collision and deadlock avoidance algorithms and quantify the impact of avoiding collision on the overall stability of the persistent sensing task. Simulated and experimental results support the proposed approach.by Daniel Eduardo Soltero.S.M

    Secure indoor navigation and operation of mobile robots

    Get PDF
    In future work environments, robots will navigate and work side by side to humans. This raises big challenges related to the safety of these robots. In this Dissertation, three tasks have been realized: 1) implementing a localization and navigation system based on StarGazer sensor and Kalman filter; 2) realizing a human-robot interaction system using Kinect sensor and BPNN and SVM models to define the gestures and 3) a new collision avoidance system is realized. The system works on generating the collision-free paths based on the interaction between the human and the robot.In zukĂĽnftigen Arbeitsumgebungen werden Roboter navigieren nebeneinander an Menschen. Das wirft Herausforderungen im Zusammenhang mit der Sicherheit dieser Roboter auf. In dieser Dissertation drei Aufgaben realisiert: 1. Implementierung eines Lokalisierungs und Navigationssystem basierend auf Kalman Filter: 2. Realisierung eines Mensch-Roboter-Interaktionssystem mit Kinect und AI zur Definition der Gesten und 3. ein neues Kollisionsvermeidungssystem wird realisiert. Das System arbeitet an der Erzeugung der kollisionsfreien Pfade, die auf der Wechselwirkung zwischen dem Menschen und dem Roboter basieren

    Cooperative control for multi-agent persistent monitoring problems

    Get PDF
    In persistent monitoring tasks, cooperating mobile agents are used to monitor a dynamically changing environment that cannot be fully covered by a stationary team of agents. The exploration process leads to the discovery of various "points of interest" (targets) to be perpetually monitored. Through an optimal control approach, the first part of this dissertation shows that in a one-dimensional mission space the solution can be reduced to a simpler parametric problem. The behavior of agents under optimal control is described by a hybrid system which can be analyzed using Infinitesimal Perturbation Analysis (IPA) to obtain an on-line solution. IPA allows the modeling of virtually arbitrary stochastic effects in target uncertainty and its event-driven nature renders the solution scalable in the number of events rather than the state space. The second part of this work extends the results of the one-dimensional persistent monitoring problem to a two-dimensional space with constrained agent mobility. Under a general graph setting, the properties of the one-dimensional optimal control solution are largely inherited. The solution involves the design of agent trajectories defined by both the sequence of nodes to be visited and the amount of time spent at each node. A class of distributed threshold-based parametric controllers is proposed to reduce the computational complexity. These parameters are optimized through an event-driven IPA gradient-based algorithm and yield optimal controllers within this family of threshold-based policies. The performance of the threshold-based parametric controller is close to that of the optimal controller derived through dynamic programming and its computational complexity is smaller by orders of magnitude. Although effective, the aforementioned optimal controls are established on the assumption that agents are all connected via a centralized controller which is energy-consuming and unreliable in adversarial environments. The third part of this work extends the previous controls by developing decentralized controllers which distribute functionality to the agents so that each one acts upon local information and sparse communication with neighbors. The complexity of decentralization for persistent monitoring problems is significant given agent mobility and the overall time-varying graph topology. Conditions are identified and a decentralized framework is proposed under which the centralized solution can be exactly recovered in a decentralized event-driven manner based on local information -- except for one event requiring communication from a non-neighbor agent
    corecore