4 research outputs found

    Organizational and Technological Aspects of a Platform for Collective Food Awareness

    Get PDF
    Can Internet-of-food technologies foster collective food awareness within a food consumer community? The paper contributes to answer this question in a fourfold aspect. Firstly, we model a cooperative process for generating and sharing reliable food information that is derived from food instrumental measurements performed by consumers via smart food things. Secondly, we outline the functional architecture of a platform capable to support such a process and to let a consumer community share reliable food information. Thirdly, we identify main entities and their attributes necessary to model the contextualized interaction between a consumer and the platform. Lastly, we review articles reviewing technologies capable of acquiring and quantifying food characteristics for food performances assessment. The purpose is to give an insight into current research directions on technologies employable in a platform for collective food awareness

    Design of a low-voltage CMOS RF receiver for energy harvesting sensor node

    Get PDF
    In this thesis a CMOS low-power and low-voltage RF receiver front-end is presented. The main objective is to design this RF receiver so that it can be powered by a piezoelectric energy harvesting power source, included in a Wireless Sensor Node application. For this type of applications the major requirements are: the low-power and low-voltage operation, the reduced area and cost and the simplicity of the architecture. The system key blocks are the LNA and the mixer, which are studied and optimized with greater detail, achieving a good linearity, a wideband operation and a reduced introduction of noise. A wideband balun LNA with noise and distortion cancelling is designed to work at a 0.6 V supply voltage, in conjunction with a double-balanced passive mixer and subsequent TIA block. The passive mixer operates in current mode, allowing a minimal introduction of voltage noise and a good linearity. The receiver analog front-end has a total voltage conversion gain of 31.5 dB, a 0.1 - 4.3 GHz bandwidth, an IIP3 value of -1.35 dBm, and a noise figure lower than 9 dB. The total power consumption is 1.9 mW and the die area is 305x134.5 m2, using a standard 130 nm CMOS technology

    Collective Awareness and Action in Urban Superorganisms

    No full text
    Future urban scenarios will be characterized by the close integration of ITC devices and humans. Citizens using their own capabilities integrated with ITC technologies could collaboratively constitute a large-scale socio-technical superorganism to support collective \u201curban\u201d awareness and activities. This position paper, with the help of a representative case study, identifies the key challenges for future urban superorganisms and proposes a two-tier architecture to support their development
    corecore