80,419 research outputs found

    Decision-focussed resource modelling for design decision support

    Get PDF
    Resource management including resource allocation, levelling, configuration and monitoring has been recognised as critical to design decision making. It has received increasing research interests in recent years. Different definitions, models and systems have been developed and published in literature. One common issue with existing research is that the resource modelling has focussed on the information view of resources. A few acknowledged the importance of resource capability to design management, but none has addressed the evaluation analysis of resource fitness to effectively support design decisions. This paper proposes a decision-focused resource model framework that addresses the combination of resource evaluation with resource information from multiple perspectives. A resource management system constructed on the resource model framework can provide functions for design engineers to efficiently search and retrieve the best fit resources (based on the evaluation results) to meet decision requirements. Thus, the system has the potential to provide improved decision making performance compared with existing resource management systems

    Proceedings of the ECCS 2005 satellite workshop: embracing complexity in design - Paris 17 November 2005

    Get PDF
    Embracing complexity in design is one of the critical issues and challenges of the 21st century. As the realization grows that design activities and artefacts display properties associated with complex adaptive systems, so grows the need to use complexity concepts and methods to understand these properties and inform the design of better artifacts. It is a great challenge because complexity science represents an epistemological and methodological swift that promises a holistic approach in the understanding and operational support of design. But design is also a major contributor in complexity research. Design science is concerned with problems that are fundamental in the sciences in general and complexity sciences in particular. For instance, design has been perceived and studied as a ubiquitous activity inherent in every human activity, as the art of generating hypotheses, as a type of experiment, or as a creative co-evolutionary process. Design science and its established approaches and practices can be a great source for advancement and innovation in complexity science. These proceedings are the result of a workshop organized as part of the activities of a UK government AHRB/EPSRC funded research cluster called Embracing Complexity in Design (www.complexityanddesign.net) and the European Conference in Complex Systems (complexsystems.lri.fr). Embracing complexity in design is one of the critical issues and challenges of the 21st century. As the realization grows that design activities and artefacts display properties associated with complex adaptive systems, so grows the need to use complexity concepts and methods to understand these properties and inform the design of better artifacts. It is a great challenge because complexity science represents an epistemological and methodological swift that promises a holistic approach in the understanding and operational support of design. But design is also a major contributor in complexity research. Design science is concerned with problems that are fundamental in the sciences in general and complexity sciences in particular. For instance, design has been perceived and studied as a ubiquitous activity inherent in every human activity, as the art of generating hypotheses, as a type of experiment, or as a creative co-evolutionary process. Design science and its established approaches and practices can be a great source for advancement and innovation in complexity science. These proceedings are the result of a workshop organized as part of the activities of a UK government AHRB/EPSRC funded research cluster called Embracing Complexity in Design (www.complexityanddesign.net) and the European Conference in Complex Systems (complexsystems.lri.fr)

    The design co-ordination framework : key elements for effective product development

    Get PDF
    This paper proposes a Design Co-ordination Framework (DCF) i.e. a concept for an ideal DC system with the abilities to support co-ordination of various complex aspects of product development. A set of frames, modelling key elements of co-ordination, which reflect the states of design, plans, organisation, allocations, tasks etc. during the design process, has been identified. Each frame is explained and the co-ordination, i.e. the management of the links between these frames, is presented, based upon characteristic DC situations in industry. It is concluded that while the DCF provides a basis for our research efforts into enhancing the product development process there is still considerable work and development required before it can adequately reflect and support Design Co-ordination

    CHORUS Deliverable 2.2: Second report - identification of multi-disciplinary key issues for gap analysis toward EU multimedia search engines roadmap

    Get PDF
    After addressing the state-of-the-art during the first year of Chorus and establishing the existing landscape in multimedia search engines, we have identified and analyzed gaps within European research effort during our second year. In this period we focused on three directions, notably technological issues, user-centred issues and use-cases and socio- economic and legal aspects. These were assessed by two central studies: firstly, a concerted vision of functional breakdown of generic multimedia search engine, and secondly, a representative use-cases descriptions with the related discussion on requirement for technological challenges. Both studies have been carried out in cooperation and consultation with the community at large through EC concertation meetings (multimedia search engines cluster), several meetings with our Think-Tank, presentations in international conferences, and surveys addressed to EU projects coordinators as well as National initiatives coordinators. Based on the obtained feedback we identified two types of gaps, namely core technological gaps that involve research challenges, and “enablers”, which are not necessarily technical research challenges, but have impact on innovation progress. New socio-economic trends are presented as well as emerging legal challenges

    A gentle transition from Java programming to Web Services using XML-RPC

    Get PDF
    Exposing students to leading edge vocational areas of relevance such as Web Services can be difficult. We show a lightweight approach by embedding a key component of Web Services within a Level 3 BSc module in Distributed Computing. We present a ready to use collection of lecture slides and student activities based on XML-RPC. In addition we show that this material addresses the central topics in the context of web services as identified by Draganova (2003)
    • 

    corecore