267 research outputs found

    The State-of-the-art of Coordinated Ramp Control with Mixed Traffic Conditions

    Get PDF
    Ramp metering, a traditional traffic control strategy for conventional vehicles, has been widely deployed around the world since the 1960s. On the other hand, the last decade has witnessed significant advances in connected and automated vehicle (CAV) technology and its great potential for improving safety, mobility and environmental sustainability. Therefore, a large amount of research has been conducted on cooperative ramp merging for CAVs only. However, it is expected that the phase of mixed traffic, namely the coexistence of both human-driven vehicles and CAVs, would last for a long time. Since there is little research on the system-wide ramp control with mixed traffic conditions, the paper aims to close this gap by proposing an innovative system architecture and reviewing the state-of-the-art studies on the key components of the proposed system. These components include traffic state estimation, ramp metering, driving behavior modeling, and coordination of CAVs. All reviewed literature plot an extensive landscape for the proposed system-wide coordinated ramp control with mixed traffic conditions.Comment: 8 pages, 1 figure, IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE - ITSC 201

    Vision-Based Lane-Changing Behavior Detection Using Deep Residual Neural Network

    Get PDF
    Accurate lane localization and lane change detection are crucial in advanced driver assistance systems and autonomous driving systems for safer and more efficient trajectory planning. Conventional localization devices such as Global Positioning System only provide road-level resolution for car navigation, which is incompetent to assist in lane-level decision making. The state of art technique for lane localization is to use Light Detection and Ranging sensors to correct the global localization error and achieve centimeter-level accuracy, but the real-time implementation and popularization for LiDAR is still limited by its computational burden and current cost. As a cost-effective alternative, vision-based lane change detection has been highly regarded for affordable autonomous vehicles to support lane-level localization. A deep learning-based computer vision system is developed to detect the lane change behavior using the images captured by a front-view camera mounted on the vehicle and data from the inertial measurement unit for highway driving. Testing results on real-world driving data have shown that the proposed method is robust with real-time working ability and could achieve around 87% lane change detection accuracy. Compared to the average human reaction to visual stimuli, the proposed computer vision system works 9 times faster, which makes it capable of helping make life-saving decisions in time

    Penetration effect of connected and automated vehicles on cooperative on‐ramp merging

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/166263/1/itr2bf00795.pd

    Coordination and Analysis of Connected and Autonomous Vehicles in Freeway On-Ramp Merging Areas

    Get PDF
    Freeway on-ramps are typical bottlenecks in the freeway network, where the merging maneuvers of ramp vehicles impose frequent disturbances on the traffic flow and cause negative impacts on traffic safety and efficiency. The emerging Connected and Autonomous Vehicles (CAVs) hold the potential for regulating the behaviors of each individual vehicle and are expected to substantially improve the traffic operation at freeway on-ramps. The aim of this research is to explore the possibilities of optimally facilitating freeway on-ramp merging operation through the coordination of CAVs, and to discuss the impacts of CAVs on the traffic performance at on-ramp merging.In view of the existing research efforts and gaps in the field of CAV on-ramp merging operation, a novel CAV merging coordination strategy is proposed by creating large gaps on the main road and directing the ramp vehicles into the created gaps in the form of platoon. The combination of gap creation and platoon merging jointly facilitates the mainline and ramp traffic and targets at the optimal performance at the traffic flow level. The coordination consists of three components: (1) mainline vehicles proactively decelerate to create large merging gaps; (2) ramp vehicles form platoons before entering the main road; (3) the gaps created on the main road and the platoons formed on the ramp are coordinated with each other in terms of size, speed, and arrival time. The coordination is analytically formulated as an optimization problem, incorporating the macroscopic and microscopic traffic flow models. The model uses traffic state parameters as inputs and determines the optimal coordination plan adaptive to real-time traffic conditions.The impacts of CAV coordination strategies on traffic efficiency are investigated through illustrative case studies conducted on microscopic traffic simulation platforms. The results show substantial improvements in merging efficiency, throughput, and traffic flow stability. In addition, the safety benefits of CAVs in the absence of specially designed cooperation strategies are investigated to reveal the CAV’s ability to eliminate critical human factors in the ramp merging process

    2nd Symposium on Management of Future motorway and urban Traffic Systems (MFTS 2018): Booklet of abstracts: Ispra, 11-12 June 2018

    Get PDF
    The Symposium focuses on future traffic management systems, covering the subjects of traffic control, estimation, and modelling of motorway and urban networks, with particular emphasis on the presence of advanced vehicle communication and automation technologies. As connectivity and automation are being progressively introduced in our transport and mobility systems, there is indeed a growing need to understand the implications and opportunities for an enhanced traffic management as well as to identify innovative ways and tools to optimise traffic efficiency. In particular the debate on centralised versus decentralised traffic management in the presence of connected and automated vehicles has started attracting the attention of the research community. In this context, the Symposium provides a remarkable opportunity to share novel ideas and discuss future research directions.JRC.C.4-Sustainable Transpor

    A Rule Based Control Algorithm for on-Ramp Merge With Connected and Automated Vehicles

    Get PDF
    One of the designs for future highways with the flow of Connected Automated Vehicles (CAVs) cars will be a dedicated lane for the CAVs to form platoons and travel with higher speeds and lower headways. The connectivity will enable the formation of platoons of CAVs traveling beside non-platoon lanes. The advent of connectivity between vehicles and the infrastructure will enable advanced control strategies ̶ improving the performance of the traffic ̶ to be incorporated in the traffic system. The merge area in a multilane highway with CAVs is one of the sections which can be enhanced by the operation of a control system. In this research, a model is developed for investigating the effects of a Rule Based control strategy yielding a more efficient and systematic method for the vehicles joining the highway mainlines comprised of platoon and non-platoon lanes. The actions tested for assisting the merge process included deceleration in the mainlines and lane change to join a platoon in the platoon lane. The model directs every CAV entering a multi-lane highway from an on-ramp, to the rightmost lane of the highway based on the appropriate action which is selected according to the traffic demand conditions and location of the on-ramp vehicle. To account for car following behavior, the vehicles in the platoon lanes are assumed to have a simplified CACC (cooperative adaptive cruise control) and those in the non-platoon lanes the IDM+ car-following model. The IDM+ car following model is modified with additional controls to incorporate the current technologies of Advanced Driver Assistant Systems (ADAS). The results of this study showed that the proposed car following model can increase the throughput of the non-platoon lane from approximately 2000 vehicle per hour (vph) to 3400 vph while the platoon lanes each had an average throughput of 3500 vph. The merge model enabled higher merging throughput for the merge area compared to current day conditions and displayed the potential for improved traffic performance in a connected environment comprised of platoon and non-platoon lanes. The results of this research will help in the design and development of advanced systems for controlling on-ramp merge sections in the future with CAVs
    • 

    corecore