5,297 research outputs found

    Analytical Challenges in Modern Tax Administration: A Brief History of Analytics at the IRS

    Get PDF

    \{kappa}HGCN: Tree-likeness Modeling via Continuous and Discrete Curvature Learning

    Full text link
    The prevalence of tree-like structures, encompassing hierarchical structures and power law distributions, exists extensively in real-world applications, including recommendation systems, ecosystems, financial networks, social networks, etc. Recently, the exploitation of hyperbolic space for tree-likeness modeling has garnered considerable attention owing to its exponential growth volume. Compared to the flat Euclidean space, the curved hyperbolic space provides a more amenable and embeddable room, especially for datasets exhibiting implicit tree-like architectures. However, the intricate nature of real-world tree-like data presents a considerable challenge, as it frequently displays a heterogeneous composition of tree-like, flat, and circular regions. The direct embedding of such heterogeneous structures into a homogeneous embedding space (i.e., hyperbolic space) inevitably leads to heavy distortions. To mitigate the aforementioned shortage, this study endeavors to explore the curvature between discrete structure and continuous learning space, aiming at encoding the message conveyed by the network topology in the learning process, thereby improving tree-likeness modeling. To the end, a curvature-aware hyperbolic graph convolutional neural network, \{kappa}HGCN, is proposed, which utilizes the curvature to guide message passing and improve long-range propagation. Extensive experiments on node classification and link prediction tasks verify the superiority of the proposal as it consistently outperforms various competitive models by a large margin.Comment: KDD 202

    Neural Ideal Point Estimation Network

    Full text link
    Understanding politics is challenging because the politics take the influence from everything. Even we limit ourselves to the political context in the legislative processes; we need a better understanding of latent factors, such as legislators, bills, their ideal points, and their relations. From the modeling perspective, this is difficult 1) because these observations lie in a high dimension that requires learning on low dimensional representations, and 2) because these observations require complex probabilistic modeling with latent variables to reflect the causalities. This paper presents a new model to reflect and understand this political setting, NIPEN, including factors mentioned above in the legislation. We propose two versions of NIPEN: one is a hybrid model of deep learning and probabilistic graphical model, and the other model is a neural tensor model. Our result indicates that NIPEN successfully learns the manifold of the legislative bill texts, and NIPEN utilizes the learned low-dimensional latent variables to increase the prediction performance of legislators' votings. Additionally, by virtue of being a domain-rich probabilistic model, NIPEN shows the hidden strength of the legislators' trust network and their various characteristics on casting votes
    • …
    corecore