59,363 research outputs found

    Learning Output Kernels for Multi-Task Problems

    Full text link
    Simultaneously solving multiple related learning tasks is beneficial under a variety of circumstances, but the prior knowledge necessary to correctly model task relationships is rarely available in practice. In this paper, we develop a novel kernel-based multi-task learning technique that automatically reveals structural inter-task relationships. Building over the framework of output kernel learning (OKL), we introduce a method that jointly learns multiple functions and a low-rank multi-task kernel by solving a non-convex regularization problem. Optimization is carried out via a block coordinate descent strategy, where each subproblem is solved using suitable conjugate gradient (CG) type iterative methods for linear operator equations. The effectiveness of the proposed approach is demonstrated on pharmacological and collaborative filtering data

    Alleviating Behavior Data Imbalance for Multi-Behavior Graph Collaborative Filtering

    Full text link
    Graph collaborative filtering, which learns user and item representations through message propagation over the user-item interaction graph, has been shown to effectively enhance recommendation performance. However, most current graph collaborative filtering models mainly construct the interaction graph on a single behavior domain (e.g. click), even though users exhibit various types of behaviors on real-world platforms, including actions like click, cart, and purchase. Furthermore, due to variations in user engagement, there exists an imbalance in the scale of different types of behaviors. For instance, users may click and view multiple items but only make selective purchases from a small subset of them. How to alleviate the behavior imbalance problem and utilize information from the multiple behavior graphs concurrently to improve the target behavior conversion (e.g. purchase) remains underexplored. To this end, we propose IMGCF, a simple but effective model to alleviate behavior data imbalance for multi-behavior graph collaborative filtering. Specifically, IMGCF utilizes a multi-task learning framework for collaborative filtering on multi-behavior graphs. Then, to mitigate the data imbalance issue, IMGCF improves representation learning on the sparse behavior by leveraging representations learned from the behavior domain with abundant data volumes. Experiments on two widely-used multi-behavior datasets demonstrate the effectiveness of IMGCF.Comment: accepted by ICDM2023 Worksho

    StarSpace: Embed All The Things!

    Full text link
    We present StarSpace, a general-purpose neural embedding model that can solve a wide variety of problems: labeling tasks such as text classification, ranking tasks such as information retrieval/web search, collaborative filtering-based or content-based recommendation, embedding of multi-relational graphs, and learning word, sentence or document level embeddings. In each case the model works by embedding those entities comprised of discrete features and comparing them against each other -- learning similarities dependent on the task. Empirical results on a number of tasks show that StarSpace is highly competitive with existing methods, whilst also being generally applicable to new cases where those methods are not

    Ask the GRU: Multi-Task Learning for Deep Text Recommendations

    Full text link
    In a variety of application domains the content to be recommended to users is associated with text. This includes research papers, movies with associated plot summaries, news articles, blog posts, etc. Recommendation approaches based on latent factor models can be extended naturally to leverage text by employing an explicit mapping from text to factors. This enables recommendations for new, unseen content, and may generalize better, since the factors for all items are produced by a compactly-parametrized model. Previous work has used topic models or averages of word embeddings for this mapping. In this paper we present a method leveraging deep recurrent neural networks to encode the text sequence into a latent vector, specifically gated recurrent units (GRUs) trained end-to-end on the collaborative filtering task. For the task of scientific paper recommendation, this yields models with significantly higher accuracy. In cold-start scenarios, we beat the previous state-of-the-art, all of which ignore word order. Performance is further improved by multi-task learning, where the text encoder network is trained for a combination of content recommendation and item metadata prediction. This regularizes the collaborative filtering model, ameliorating the problem of sparsity of the observed rating matrix.Comment: 8 page

    Missing Value Imputation With Unsupervised Backpropagation

    Full text link
    Many data mining and data analysis techniques operate on dense matrices or complete tables of data. Real-world data sets, however, often contain unknown values. Even many classification algorithms that are designed to operate with missing values still exhibit deteriorated accuracy. One approach to handling missing values is to fill in (impute) the missing values. In this paper, we present a technique for unsupervised learning called Unsupervised Backpropagation (UBP), which trains a multi-layer perceptron to fit to the manifold sampled by a set of observed point-vectors. We evaluate UBP with the task of imputing missing values in datasets, and show that UBP is able to predict missing values with significantly lower sum-squared error than other collaborative filtering and imputation techniques. We also demonstrate with 24 datasets and 9 supervised learning algorithms that classification accuracy is usually higher when randomly-withheld values are imputed using UBP, rather than with other methods

    Context Aware Music Recommendation and Playlist Generation

    Get PDF
    There are many reasons people listen to music, and the type of music is largely determined by what the listener may be doing while they listen. For example, one may listen to one type of music while commuting, another while exercising, and yet another while relaxing. Without access to the physiological state of the user, current music recommendation methods rely on collaborative filtering - recommending music based on what other similar users listen to - and content based filtering - recommending songs based on their similarities to songs the user already prefers. With the rise in popularity of smart devices and activity trackers, physiological context can be a new channel to inform music recommendations. We propose deep learning solutions for context aware recommendation and playlist generation. Specifically, we use variational autoencoders (VAEs) to create a song embedding. We then explore multi-task multi-layer perceptrons (MLPs) and Gaussian mixture models to recommend songs based on context. We generate artificial user data to train and test our models in online learning and supervised learning settings
    • …
    corecore