48 research outputs found

    スペクトルの線形性を考慮したハイパースペクトラル画像のノイズ除去とアンミキシングに関する研究

    Get PDF
    This study aims to generalize color line to M-dimensional spectral line feature (M>3) and introduce methods for denoising and unmixing of hyperspectral images based on the spectral linearity.For denoising, we propose a local spectral component decomposition method based on the spectral line. We first calculate the spectral line of an M-channel image, then using the line, we decompose the image into three components: a single M-channel image and two gray-scale images. By virtue of the decomposition, the noise is concentrated on the two images, thus the algorithm needs to denoise only two grayscale images, regardless of the number of channels. For unmixing, we propose an algorithm that exploits the low-rank local abundance by applying the unclear norm to the abundance matrix for local regions of spatial and abundance domains. In optimization problem, the local abundance regularizer is collaborated with the L2, 1 norm and the total variation.北九州市立大

    Approximate Sparse Regularized Hyperspectral Unmixing

    Get PDF
    Sparse regression based unmixing has been recently proposed to estimate the abundance of materials present in hyperspectral image pixel. In this paper, a novel sparse unmixing optimization model based on approximate sparsity, namely, approximate sparse unmixing (ASU), is firstly proposed to perform the unmixing task for hyperspectral remote sensing imagery. And then, a variable splitting and augmented Lagrangian algorithm is introduced to tackle the optimization problem. In ASU, approximate sparsity is used as a regularizer for sparse unmixing, which is sparser than l1 regularizer and much easier to be solved than l0 regularizer. Three simulated and one real hyperspectral images were used to evaluate the performance of the proposed algorithm in comparison to l1 regularizer. Experimental results demonstrate that the proposed algorithm is more effective and accurate for hyperspectral unmixing than state-of-the-art l1 regularizer

    Variable-Wise Diagonal Preconditioning for Primal-Dual Splitting: Design and Applications

    Full text link
    This paper proposes a method of designing appropriate diagonal preconditioners for a preconditioned primal-dual splitting method (P-PDS). P-PDS can efficiently solve various types of convex optimization problems arising in signal processing and image processing. Since the appropriate diagonal preconditioners that accelerate the convergence of P-PDS vary greatly depending on the structure of the target optimization problem, a design method of diagonal preconditioners for PPDS has been proposed to determine them automatically from the problem structure. However, the existing method has two limitations: it requires direct access to all elements of the matrices representing the linear operators involved in the target optimization problem, and it is element-wise preconditioning, which makes certain types of proximity operators impossible to compute analytically. To overcome these limitations, we establish an Operator-norm-based design method of Variable-wise Diagonal Preconditioning (OVDP). First, the diagonal preconditioners constructed by OVDP are defined using only the operator norm or its upper bound of the linear operator thus eliminating the need for their explicit matrix representations. Furthermore, since our method is variable-wise preconditioning, it keeps all proximity operators efficiently computable. We also prove that our preconditioners satisfy the convergence conditions of PPDS. Finally, we demonstrate the effectiveness and utility of our method through applications to hyperspectral image mixed noise removal, hyperspectral unmixing, and graph signal recovery.Comment: Submitted to IEEE Transactions on Signal Processin

    Image Processing and Machine Learning for Hyperspectral Unmixing: An Overview and the HySUPP Python Package

    Full text link
    Spectral pixels are often a mixture of the pure spectra of the materials, called endmembers, due to the low spatial resolution of hyperspectral sensors, double scattering, and intimate mixtures of materials in the scenes. Unmixing estimates the fractional abundances of the endmembers within the pixel. Depending on the prior knowledge of endmembers, linear unmixing can be divided into three main groups: supervised, semi-supervised, and unsupervised (blind) linear unmixing. Advances in Image processing and machine learning substantially affected unmixing. This paper provides an overview of advanced and conventional unmixing approaches. Additionally, we draw a critical comparison between advanced and conventional techniques from the three categories. We compare the performance of the unmixing techniques on three simulated and two real datasets. The experimental results reveal the advantages of different unmixing categories for different unmixing scenarios. Moreover, we provide an open-source Python-based package available at https://github.com/BehnoodRasti/HySUPP to reproduce the results

    Robust Constrained Hyperspectral Unmixing Using Reconstructed-Image Regularization

    Full text link
    Hyperspectral (HS) unmixing is the process of decomposing an HS image into material-specific spectra (endmembers) and their spatial distributions (abundance maps). Existing unmixing methods have two limitations with respect to noise robustness. First, if the input HS image is highly noisy, even if the balance between sparse and piecewise-smooth regularizations for abundance maps is carefully adjusted, noise may remain in the estimated abundance maps or undesirable artifacts may appear. Second, existing methods do not explicitly account for the effects of stripe noise, which is common in HS measurements, in their formulations, resulting in significant degradation of unmixing performance when such noise is present in the input HS image. To overcome these limitations, we propose a new robust hyperspectral unmixing method based on constrained convex optimization. Our method employs, in addition to the two regularizations for the abundance maps, regularizations for the HS image reconstructed by mixing the estimated abundance maps and endmembers. This strategy makes the unmixing process much more robust in highly-noisy scenarios, under the assumption that the abundance maps used to reconstruct the HS image with desirable spatio-spectral structure are also expected to have desirable properties. Furthermore, our method is designed to accommodate a wider variety of noise including stripe noise. To solve the formulated optimization problem, we develop an efficient algorithm based on a preconditioned primal-dual splitting method, which can automatically determine appropriate stepsizes based on the problem structure. Experiments on synthetic and real HS images demonstrate the advantages of our method over existing methods.Comment: Submitted to IEEE Transactions on Geoscience and Remote Sensin

    A convex model for non-negative matrix factorization and dimensionality reduction on physical space

    Full text link
    A collaborative convex framework for factoring a data matrix XX into a non-negative product ASAS, with a sparse coefficient matrix SS, is proposed. We restrict the columns of the dictionary matrix AA to coincide with certain columns of the data matrix XX, thereby guaranteeing a physically meaningful dictionary and dimensionality reduction. We use l1,l_{1,\infty} regularization to select the dictionary from the data and show this leads to an exact convex relaxation of l0l_0 in the case of distinct noise free data. We also show how to relax the restriction-to-XX constraint by initializing an alternating minimization approach with the solution of the convex model, obtaining a dictionary close to but not necessarily in XX. We focus on applications of the proposed framework to hyperspectral endmember and abundances identification and also show an application to blind source separation of NMR data.Comment: 14 pages, 9 figures. EE and JX were supported by NSF grants {DMS-0911277}, {PRISM-0948247}, MM by the German Academic Exchange Service (DAAD), SO and MM by NSF grants {DMS-0835863}, {DMS-0914561}, {DMS-0914856} and ONR grant {N00014-08-1119}, and GS was supported by NSF, NGA, ONR, ARO, DARPA, and {NSSEFF.

    Image Restoration for Remote Sensing: Overview and Toolbox

    Full text link
    Remote sensing provides valuable information about objects or areas from a distance in either active (e.g., RADAR and LiDAR) or passive (e.g., multispectral and hyperspectral) modes. The quality of data acquired by remotely sensed imaging sensors (both active and passive) is often degraded by a variety of noise types and artifacts. Image restoration, which is a vibrant field of research in the remote sensing community, is the task of recovering the true unknown image from the degraded observed image. Each imaging sensor induces unique noise types and artifacts into the observed image. This fact has led to the expansion of restoration techniques in different paths according to each sensor type. This review paper brings together the advances of image restoration techniques with particular focuses on synthetic aperture radar and hyperspectral images as the most active sub-fields of image restoration in the remote sensing community. We, therefore, provide a comprehensive, discipline-specific starting point for researchers at different levels (i.e., students, researchers, and senior researchers) willing to investigate the vibrant topic of data restoration by supplying sufficient detail and references. Additionally, this review paper accompanies a toolbox to provide a platform to encourage interested students and researchers in the field to further explore the restoration techniques and fast-forward the community. The toolboxes are provided in https://github.com/ImageRestorationToolbox.Comment: This paper is under review in GRS
    corecore