13 research outputs found

    Graph Laplacian for Image Anomaly Detection

    Get PDF
    Reed-Xiaoli detector (RXD) is recognized as the benchmark algorithm for image anomaly detection; however, it presents known limitations, namely the dependence over the image following a multivariate Gaussian model, the estimation and inversion of a high-dimensional covariance matrix, and the inability to effectively include spatial awareness in its evaluation. In this work, a novel graph-based solution to the image anomaly detection problem is proposed; leveraging the graph Fourier transform, we are able to overcome some of RXD's limitations while reducing computational cost at the same time. Tests over both hyperspectral and medical images, using both synthetic and real anomalies, prove the proposed technique is able to obtain significant gains over performance by other algorithms in the state of the art.Comment: Published in Machine Vision and Applications (Springer

    Low-Rank and Sparse Decomposition for Hyperspectral Image Enhancement and Clustering

    Get PDF
    In this dissertation, some new algorithms are developed for hyperspectral imaging analysis enhancement. Tensor data format is applied in hyperspectral dataset sparse and low-rank decomposition, which could enhance the classification and detection performance. And multi-view learning technique is applied in hyperspectral imaging clustering. Furthermore, kernel version of multi-view learning technique has been proposed, which could improve clustering performance. Most of low-rank and sparse decomposition algorithms are based on matrix data format for HSI analysis. As HSI contains high spectral dimensions, tensor based extended low-rank and sparse decomposition (TELRSD) is proposed in this dissertation for better performance of HSI classification with low-rank tensor part, and HSI detection with sparse tensor part. With this tensor based method, HSI is processed in 3D data format, and information between spectral bands and pixels maintain integrated during decomposition process. This proposed algorithm is compared with other state-of-art methods. And the experiment results show that TELRSD has the best performance among all those comparison algorithms. HSI clustering is an unsupervised task, which aims to group pixels into different groups without labeled information. Low-rank sparse subspace clustering (LRSSC) is the most popular algorithms for this clustering task. The spatial-spectral based multi-view low-rank sparse subspace clustering (SSMLC) algorithms is proposed in this dissertation, which extended LRSSC with multi-view learning technique. In this algorithm, spectral and spatial views are created to generate multi-view dataset of HSI, where spectral partition, morphological component analysis (MCA) and principle component analysis (PCA) are applied to create others views. Furthermore, kernel version of SSMLC (k-SSMLC) also has been investigated. The performance of SSMLC and k-SSMLC are compared with sparse subspace clustering (SSC), low-rank sparse subspace clustering (LRSSC), and spectral-spatial sparse subspace clustering (S4C). It has shown that SSMLC could improve the performance of LRSSC, and k-SSMLC has the best performance. The spectral clustering has been proved that it equivalent to non-negative matrix factorization (NMF) problem. In this case, NMF could be applied to the clustering problem. In order to include local and nonlinear features in data source, orthogonal NMF (ONMF), graph-regularized NMF (GNMF) and kernel NMF (k-NMF) has been proposed for better clustering performance. The non-linear orthogonal graph NMF combine both kernel, orthogonal and graph constraints in NMF (k-OGNMF), which push up the clustering performance further. In the HSI domain, kernel multi-view based orthogonal graph NMF (k-MOGNMF) is applied for subspace clustering, where k-OGNMF is extended with multi-view algorithm, and it has better performance and computation efficiency

    Improving Hyperspectral Subpixel Target Detection Using Hybrid Detection Space

    Full text link
    A Hyper-Spectral Image (HSI) has high spectral and low spatial resolution. As a result, most targets exist as subpixels, which pose challenges in target detection. Moreover, limitation of target and background samples always hinders the target detection performance. In this thesis, a hybrid method for subpixel target detection of an HSI using minimal prior knowledge is developed. The Matched Filter (MF) and Adaptive Cosine Estimator (ACE) are two popular algorithms in HSI target detection. They have different advantages in differentiating target from background. In the proposed method, the scores of MF and ACE algorithms are used to construct a hybrid detection space. First, some high abundance target spectra are randomly picked from the scene to perform initial detection to determine the target and background subsets. Then, the reference target spectrum and background covariance matrix are improved iteratively, using the hybrid detection space. As the iterations continue, the reference target spectrum gets closer and closer to the central line that connects the centers of target and background and resulting in noticeable improvement in target detection. Two synthetic datasets and two real datasets are used in the experiments. The results are evaluated based on the mean detection rate, Receiver Operating Characteristic (ROC) curve and observation of the detection results. Compared to traditional MF and ACE algorithms with Reed-Xiaoli Detector (RXD) background covariance matrix estimation, the new method shows much better performance on all four datasets. This method can be applied in environmental monitoring, mineral detection, as well as oceanography and forestry reconnaissance to search for extremely small target distribution in a large scene

    Hyperspectral Image Analysis through Unsupervised Deep Learning

    Get PDF
    Hyperspectral image (HSI) analysis has become an active research area in computer vision field with a wide range of applications. However, in order to yield better recognition and analysis results, we need to address two challenging issues of HSI, i.e., the existence of mixed pixels and its significantly low spatial resolution (LR). In this dissertation, spectral unmixing (SU) and hyperspectral image super-resolution (HSI-SR) approaches are developed to address these two issues with advanced deep learning models in an unsupervised fashion. A specific application, anomaly detection, is also studied, to show the importance of SU.Although deep learning has achieved the state-of-the-art performance on supervised problems, its practice on unsupervised problems has not been fully developed. To address the problem of SU, an untied denoising autoencoder is proposed to decompose the HSI into endmembers and abundances with non-negative and abundance sum-to-one constraints. The denoising capacity is incorporated into the network with a sparsity constraint to boost the performance of endmember extraction and abundance estimation.Moreover, the first attempt is made to solve the problem of HSI-SR using an unsupervised encoder-decoder architecture by fusing the LR HSI with the high-resolution multispectral image (MSI). The architecture is composed of two encoder-decoder networks, coupled through a shared decoder, to preserve the rich spectral information from the HSI network. It encourages the representations from both modalities to follow a sparse Dirichlet distribution which naturally incorporates the two physical constraints of HSI and MSI. And the angular difference between representations are minimized to reduce the spectral distortion.Finally, a novel detection algorithm is proposed through spectral unmixing and dictionary based low-rank decomposition, where the dictionary is constructed with mean-shift clustering and the coefficients of the dictionary is encouraged to be low-rank. Experimental evaluations show significant improvement on the performance of anomaly detection conducted on the abundances (through SU).The effectiveness of the proposed approaches has been evaluated thoroughly by extensive experiments, to achieve the state-of-the-art results

    Essays on hyperspectral image analysis: classification and target detection

    Get PDF
    Over the past a few decades, hyperspectral imaging has drawn significant attention and become an important scientific tool for various fields of real-world applications. Among the research topics of hyperspectral image (HSI) analysis, two major topics -- HSI classification and HSI target detection have been intensively studied. Statistical learning has played a pivotal role in promoting the development of algorithms and methodologies for the two topics. Among the existing methods for HSI classification, sparse representation classification (SRC) has been widely investigated, which is based on the assumption that a signal can be represented by a linear combination of a small number of redundant bases (so called dictionary atoms). By virtue of the signal coherence in HSIs, a joint sparse model (JSM) has been successfully developed for HSI classification and has achieved promising performance. However, the JSM-based dictionary learning for HSIs is barely discussed. In addition, the non-negativity properties of coefficients in the JSM are also little touched. HSI target detection can be regarded as a special case of classification, i.e. a binary classification, but faces more challenges. Traditional statistical methods regard a test HSI pixel as a linear combination of several endmembers with corresponding fractions, i.e. based on the linear mixing model (LMM). However, due to the complicated environments in real-world problems, complex mixing effects may exist in HSIs and make the detection of targets more difficult. As a consequence, the performance of traditional LMM is limited. In this thesis, we focus on the topics of HSI classification and HSI target detection and propose five new methods to tackle the aforementioned issues in the two tasks. For the HSI classification, two new methods are proposed based on the JSM. The first proposed method focuses on the dictionary learning, which incorporates the JSM in the discriminative K-SVD learning algorithm, in order to learn a quality dictionary with rich information for improving the classification performance. The second proposed method focuses on developing the convex cone-based JSM, i.e. by incorporating the non-negativity constraints in the coefficients in the JSM. For the HSI target detection, three approaches are proposed based on the linear mixing model (LMM). The first approach takes account of interaction effects to tackle the mixing problems in HSI target detection. The second approach called matched shrunken subspace detector (MSSD) and the third approach, called matched cone shrunken detector (MSCD), both offer on Bayesian derivatives of regularisation constrained LMM. Specifically, the proposed MSSD is a regularised subspace-representation of LMM, while the proposed MSCD is a regularised cone-representation of LMM

    Selective Search Collaborative Representation for Hyperspectral Anomaly Detection

    No full text
    As an important tool in hyperspectral anomaly detection, collaborative representation detection (CRD) has attracted significant attention in recent years. However, the lack of global feature utilization, the contamination of the background dictionary, and the dependence on the sizes of the dual-window lead to instability of anomaly detection performance of CRD, making it difficult to apply in practice. To address these issues, a selective search collaborative representation detector is proposed. The selective search is based on global information and spectral similarity to realize the flexible fusion of adjacent homogeneous pixels. According to the homogeneous segmentation, the pixels with low background probability can be removed from the local background dictionary in CRD to achieve the purification of the local background and the improvement of detection performance, even under inappropriate dual-window sizes. Three real hyperspectral images are introduced to verify the feasibility and effectiveness of the proposed method. The detection performance is depicted by intuitive detection images, receiver operating characteristic curves, and area under curve values, as well as by running time. Comparison with CRD proves that the proposed method can effectively improve the anomaly detection accuracy of CRD and reduce the dependence of anomaly detection performance on the sizes of the dual-window
    corecore