3,947 research outputs found

    Scalable and interpretable product recommendations via overlapping co-clustering

    Full text link
    We consider the problem of generating interpretable recommendations by identifying overlapping co-clusters of clients and products, based only on positive or implicit feedback. Our approach is applicable on very large datasets because it exhibits almost linear complexity in the input examples and the number of co-clusters. We show, both on real industrial data and on publicly available datasets, that the recommendation accuracy of our algorithm is competitive to that of state-of-art matrix factorization techniques. In addition, our technique has the advantage of offering recommendations that are textually and visually interpretable. Finally, we examine how to implement our technique efficiently on Graphical Processing Units (GPUs).Comment: In IEEE International Conference on Data Engineering (ICDE) 201

    Intelligent Product Brokering for E-Commerce: An Incremental Approach to Unaccounted Attribute Detection

    Get PDF
    This research concentrates on designing generic product-brokering agent to understand user preference towards a product category and recommends a list of products to the user according to the preference captured by the agent. The proposed solution is able to detect both quantifiable and non-quantifiable attributes through a user feedback system. Unlike previous approaches, this research allows the detection of unaccounted attributes that are not within the ontology of the system. No tedious change of the algorithm, database, or ontology is required when a new product attribute is introduced. This approach only requires the attribute to be within the description field of the product. The system analyzes the general product descriptions field and creates a list of candidate attributes affecting the user’s preference. A genetic algorithm verifies these candidate attributes and excess attributes are identified and filtered off. A prototype has been created and our results show positive results in the detection of unaccounted attributes affecting a user

    Hybrid group recommendations for a travel service

    Get PDF
    Recommendation techniques have proven their usefulness as a tool to cope with the information overload problem in many classical domains such as movies, books, and music. Additional challenges for recommender systems emerge in the domain of tourism such as acquiring metadata and feedback, the sparsity of the rating matrix, user constraints, and the fact that traveling is often a group activity. This paper proposes a recommender system that offers personalized recommendations for travel destinations to individuals and groups. These recommendations are based on the users' rating profile, personal interests, and specific demands for their next destination. The recommendation algorithm is a hybrid approach combining a content-based, collaborative filtering, and knowledge-based solution. For groups of users, such as families or friends, individual recommendations are aggregated into group recommendations, with an additional opportunity for users to give feedback on these group recommendations. A group of test users evaluated the recommender system using a prototype web application. The results prove the usefulness of individual and group recommendations and show that users prefer the hybrid algorithm over each individual technique. This paper demonstrates the added value of various recommendation algorithms in terms of different quality aspects, compared to an unpersonalized list of the most-popular destinations

    Top-N Recommender System via Matrix Completion

    Full text link
    Top-N recommender systems have been investigated widely both in industry and academia. However, the recommendation quality is far from satisfactory. In this paper, we propose a simple yet promising algorithm. We fill the user-item matrix based on a low-rank assumption and simultaneously keep the original information. To do that, a nonconvex rank relaxation rather than the nuclear norm is adopted to provide a better rank approximation and an efficient optimization strategy is designed. A comprehensive set of experiments on real datasets demonstrates that our method pushes the accuracy of Top-N recommendation to a new level.Comment: AAAI 201

    QDEE: Question Difficulty and Expertise Estimation in Community Question Answering Sites

    Full text link
    In this paper, we present a framework for Question Difficulty and Expertise Estimation (QDEE) in Community Question Answering sites (CQAs) such as Yahoo! Answers and Stack Overflow, which tackles a fundamental challenge in crowdsourcing: how to appropriately route and assign questions to users with the suitable expertise. This problem domain has been the subject of much research and includes both language-agnostic as well as language conscious solutions. We bring to bear a key language-agnostic insight: that users gain expertise and therefore tend to ask as well as answer more difficult questions over time. We use this insight within the popular competition (directed) graph model to estimate question difficulty and user expertise by identifying key hierarchical structure within said model. An important and novel contribution here is the application of "social agony" to this problem domain. Difficulty levels of newly posted questions (the cold-start problem) are estimated by using our QDEE framework and additional textual features. We also propose a model to route newly posted questions to appropriate users based on the difficulty level of the question and the expertise of the user. Extensive experiments on real world CQAs such as Yahoo! Answers and Stack Overflow data demonstrate the improved efficacy of our approach over contemporary state-of-the-art models. The QDEE framework also allows us to characterize user expertise in novel ways by identifying interesting patterns and roles played by different users in such CQAs.Comment: Accepted in the Proceedings of the 12th International AAAI Conference on Web and Social Media (ICWSM 2018). June 2018. Stanford, CA, US
    corecore